-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathiwmmse.m
69 lines (68 loc) · 2.42 KB
/
iwmmse.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
clear;
K = 4;
M = 4;
N = 2;
Q = 5;
I = 10;
SNRdB = 0;
SNR = 10^(SNRdB / 10);
P = SNR / Q;
r = 1000;
clusters = zeros(K, 1);
if K == 1
clusters = 0 + 0j;
elseif K == 4
clusters = [0, ...
r * 1j, ...
r * cos(pi / 6) + r * sin(pi / 6) * 1j, ...
-r * cos(pi / 6) + r * sin(pi / 6) * 1j];
end
closures = findClusterClosures(clusters, 0.9 * r);
numCases = 50;
totalSumRate = 0;
totalNumIterations = 0;
maxIterations = 1e6;
epsilon = 1e-1;
TrH = zeros(numCases * K * I * Q, 1);
TrV = zeros(numCases * K * I * Q, 1);
for i = 1 : numCases
numIterations = 0;
prev = 0.0;
[bss, ues] = brownian(K, Q, I, clusters, r / sqrt(3));
H = generateMIMOChannel(K, Q, M, bss, I, N, ues, 2);
V = generateRandomTxVector(K, Q, M, I, N, P, H, closures, 1);
[U, W, R] = updateWMMSEVariables(K, Q, M, I, N, H, V);
while abs(prev - sum(R)) > epsilon
prev = sum(R);
numIterations = numIterations + 1;
if numIterations > maxIterations
numIterations = numIterations - 1;
break;
end
mmse = updateMmseMMatrix(K, Q, M, I, N, H, U, W);
V = iterateWMMSE(K, Q, M, I, N, mmse, P, H, W, U);
[U, W, R] = updateWMMSEVariables(K, Q, M, I, N, H, V);
fprintf(2, ' %d.%d Sum rate %f\n', i, numIterations, sum(R));
end
fprintf(2, '->Case #%d: R = %f, # = %d\n', i, sum(R), numIterations);
totalSumRate = totalSumRate + sum(R);
totalNumIterations = totalNumIterations + numIterations;
fprintf(2, '=>Current avg sum rate: %f\n', totalSumRate / i);
fprintf(2, '=>Current avg number of iterations: %f\n', totalNumIterations / i);
for k = 1 : K
for j = 1 : I
for q = 1 : Q
rowOffset = (k - 1) * I * N + (j - 1) * N;
colOffset = (k - 1) * Q * M + (q - 1) * M;
h = H(rowOffset + 1 : rowOffset + N, colOffset + 1 : colOffset + M);
TrH((i - 1) * K * I * Q + (k - 1) * I * Q + (j - 1) * Q + q) = trace(h * h');
rowOffset = (k - 1) * Q * M + (q - 1) * M;
colOffset = (k - 1) * I + j;
v = V(rowOffset + 1 : rowOffset + M, colOffset);
TrV((i - 1) * K * I * Q + (k - 1) * I * Q + (j - 1) * Q + q) = norm(v);
end
end
end
end
fprintf(2, 'Avg sum rate: %f\n', totalSumRate / numCases);
fprintf(2, 'Avg number of iterations: %f\n', totalNumIterations / numCases);