-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbspdegelev.m
289 lines (279 loc) · 19.8 KB
/
bspdegelev.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
function [ic,ik] = bspdegelev(d,c,k,t)
%
% Function Name:
%
% bspdegevel - Degree elevate a univariate B-Spline.
%
% Calling Sequence:
%
% [ic,ik] = bspdegelev(d,c,k,t)
%
% Parameters:
%
% d : Degree of the B-Spline.
%
% c : Control points, matrix of size (dim,nc).
%
% k : Knot sequence, row vector of size nk.
%
% t : Raise the B-Spline degree t times.
%
% ic : Control points of the new B-Spline.
%
% ik : Knot vector of the new B-Spline.
%
% Description:
%
% Degree elevate a univariate B-Spline. This function provides an
% interface to a toolbox 'C' routine.
[mc,nc] = size(c);
%
% int bspdegelev(int d, double *c, int mc, int nc, double *k, int nk,
% int t, int *nh, double *ic, double *ik)
% {
% int row,col;
%
% int ierr = 0;
% int i, j, q, s, m, ph, ph2, mpi, mh, r, a, b, cind, oldr, mul;
% int n, lbz, rbz, save, tr, kj, first, kind, last, bet, ii;
% double inv, ua, ub, numer, den, alf, gam;
% double **bezalfs, **bpts, **ebpts, **Nextbpts, *alfs;
%
% double **ctrl = vec2mat(c, mc, nc);
% ic = zeros(mc,nc*(t)); % double **ictrl = vec2mat(ic, mc, nc*(t+1));
%
n = nc - 1; % n = nc - 1;
%
bezalfs = zeros(d+1,d+t+1); % bezalfs = matrix(d+1,d+t+1);
bpts = zeros(mc,d+1); % bpts = matrix(mc,d+1);
ebpts = zeros(mc,d+t+1); % ebpts = matrix(mc,d+t+1);
Nextbpts = zeros(mc,d+1); % Nextbpts = matrix(mc,d+1);
alfs = zeros(d,1); % alfs = (double *) mxMalloc(d*sizeof(double));
%
m = n + d + 1; % m = n + d + 1;
ph = d + t; % ph = d + t;
ph2 = floor(ph / 2); % ph2 = ph / 2;
%
% // compute bezier degree elevation coefficeients
bezalfs(1,1) = 1; % bezalfs[0][0] = bezalfs[ph][d] = 1.0;
bezalfs(d+1,ph+1) = 1; %
for i=1:ph2 % for (i = 1; i <= ph2; i++) {
inv = 1/bincoeff(ph,i); % inv = 1.0 / bincoeff(ph,i);
mpi = min(d,i); % mpi = min(d,i);
%
for j=max(0,i-t):mpi % for (j = max(0,i-t); j <= mpi; j++)
bezalfs(j+1,i+1) = inv*bincoeff(d,j)*bincoeff(t,i-j); % bezalfs[i][j] = inv * bincoeff(d,j) * bincoeff(t,i-j);
end
end % }
%
for i=ph2+1:ph-1 % for (i = ph2+1; i <= ph-1; i++) {
mpi = min(d,i); % mpi = min(d, i);
for j=max(0,i-t):mpi % for (j = max(0,i-t); j <= mpi; j++)
bezalfs(j+1,i+1) = bezalfs(d-j+1,ph-i+1); % bezalfs[i][j] = bezalfs[ph-i][d-j];
end
end % }
%
mh = ph; % mh = ph;
kind = ph+1; % kind = ph+1;
r = -1; % r = -1;
a = d; % a = d;
b = d+1; % b = d+1;
cind = 1; % cind = 1;
ua = k(1); % ua = k[0];
%
for ii=0:mc-1 % for (ii = 0; ii < mc; ii++)
ic(ii+1,1) = c(ii+1,1); % ictrl[0][ii] = ctrl[0][ii];
end %
for i=0:ph % for (i = 0; i <= ph; i++)
ik(i+1) = ua; % ik[i] = ua;
end %
% // initialise first bezier seg
for i=0:d % for (i = 0; i <= d; i++)
for ii=0:mc-1 % for (ii = 0; ii < mc; ii++)
bpts(ii+1,i+1) = c(ii+1,i+1); % bpts[i][ii] = ctrl[i][ii];
end
end %
% // big loop thru knot vector
while b < m % while (b < m) {
i = b; % i = b;
while b < m && k(b+1) == k(b+2) % while (b < m && k[b] == k[b+1])
b = b + 1; % b++;
end %
mul = b - i + 1; % mul = b - i + 1;
mh = mh + mul + t; % mh += mul + t;
ub = k(b+1); % ub = k[b];
oldr = r; % oldr = r;
r = d - mul; % r = d - mul;
%
% // insert knot u(b) r times
if oldr > 0 % if (oldr > 0)
lbz = floor((oldr+2)/2); % lbz = (oldr+2) / 2;
else % else
lbz = 1; % lbz = 1;
end %
if r > 0 % if (r > 0)
rbz = ph - floor((r+1)/2); % rbz = ph - (r+1)/2;
else % else
rbz = ph; % rbz = ph;
end %
if r > 0 % if (r > 0) {
% // insert knot to get bezier segment
numer = ub - ua; % numer = ub - ua;
for q=d:-1:mul+1 % for (q = d; q > mul; q--)
alfs(q-mul) = numer / (k(a+q+1)-ua); % alfs[q-mul-1] = numer / (k[a+q]-ua);
end
for j=1:r % for (j = 1; j <= r; j++) {
save = r - j; % save = r - j;
s = mul + j; % s = mul + j;
%
for q=d:-1:s % for (q = d; q >= s; q--)
for ii=0:mc-1 % for (ii = 0; ii < mc; ii++)
tmp1 = alfs(q-s+1)*bpts(ii+1,q+1);
tmp2 = (1-alfs(q-s+1))*bpts(ii+1,q);
bpts(ii+1,q+1) = tmp1 + tmp2; % bpts[q][ii] = alfs[q-s]*bpts[q][ii]+(1.0-alfs[q-s])*bpts[q-1][ii];
end
end %
for ii=0:mc-1 % for (ii = 0; ii < mc; ii++)
Nextbpts(ii+1,save+1) = bpts(ii+1,d+1); % Nextbpts[save][ii] = bpts[d][ii];
end
end % }
end % }
% // end of insert knot
%
% // degree elevate bezier
for i=lbz:ph % for (i = lbz; i <= ph; i++) {
for ii=0:mc-1 % for (ii = 0; ii < mc; ii++)
ebpts(ii+1,i+1) = 0; % ebpts[i][ii] = 0.0;
end
mpi = min(d, i); % mpi = min(d, i);
for j=max(0,i-t):mpi % for (j = max(0,i-t); j <= mpi; j++)
for ii=0:mc-1 % for (ii = 0; ii < mc; ii++)
tmp1 = ebpts(ii+1,i+1);
tmp2 = bezalfs(j+1,i+1)*bpts(ii+1,j+1);
ebpts(ii+1,i+1) = tmp1 + tmp2; % ebpts[i][ii] = ebpts[i][ii] + bezalfs[i][j]*bpts[j][ii];
end
end
end % }
% // end of degree elevating bezier
%
if oldr > 1 % if (oldr > 1) {
% // must remove knot u=k[a] oldr times
first = kind - 2; % first = kind - 2;
last = kind; % last = kind;
den = ub - ua; % den = ub - ua;
bet = floor((ub-ik(kind)) / den); % bet = (ub-ik[kind-1]) / den;
%
% // knot removal loop
for tr=1:oldr-1 % for (tr = 1; tr < oldr; tr++) {
i = first; % i = first;
j = last; % j = last;
kj = j - kind + 1; % kj = j - kind + 1;
while j-i > tr % while (j - i > tr) {
% // loop and compute the new control points
% // for one removal step
if i < cind % if (i < cind) {
alf = (ub-ik(i+1))/(ua-ik(i+1)); % alf = (ub-ik[i])/(ua-ik[i]);
for ii=0:mc-1 % for (ii = 0; ii < mc; ii++)
tmp1 = alf*ic(ii+1,i+1);
tmp2 = (1-alf)*ic(ii+1,i);
ic(ii+1,i+1) = tmp1 + tmp2; % ictrl[i][ii] = alf * ictrl[i][ii] + (1.0-alf) * ictrl[i-1][ii];
end
end % }
if j >= lbz % if (j >= lbz) {
if j-tr <= kind-ph+oldr % if (j-tr <= kind-ph+oldr) {
gam = (ub-ik(j-tr+1)) / den; % gam = (ub-ik[j-tr]) / den;
for ii=0:mc-1 % for (ii = 0; ii < mc; ii++)
tmp1 = gam*ebpts(ii+1,kj+1);
tmp2 = (1-gam)*ebpts(ii+1,kj+2);
ebpts(ii+1,kj+1) = tmp1 + tmp2; % ebpts[kj][ii] = gam*ebpts[kj][ii] + (1.0-gam)*ebpts[kj+1][ii];
end % }
else % else {
for ii=0:mc-1 % for (ii = 0; ii < mc; ii++)
tmp1 = bet*ebpts(ii+1,kj+1);
tmp2 = (1-bet)*ebpts(ii+1,kj+2);
ebpts(ii+1,kj+1) = tmp1 + tmp2; % ebpts[kj][ii] = bet*ebpts[kj][ii] + (1.0-bet)*ebpts[kj+1][ii];
end
end % }
end % }
i = i + 1; % i++;
j = j - 1; % j--;
kj = kj - 1; % kj--;
end % }
%
first = first - 1; % first--;
last = last + 1; % last++;
end % }
end % }
% // end of removing knot n=k[a]
%
% // load the knot ua
if a ~= d % if (a != d)
for i=0:ph-oldr-1 % for (i = 0; i < ph-oldr; i++) {
ik(kind+1) = ua; % ik[kind] = ua;
kind = kind + 1; % kind++;
end
end % }
%
% // load ctrl pts into ic
for j=lbz:rbz % for (j = lbz; j <= rbz; j++) {
for ii=0:mc-1 % for (ii = 0; ii < mc; ii++)
ic(ii+1,cind+1) = ebpts(ii+1,j+1); % ictrl[cind][ii] = ebpts[j][ii];
end
cind = cind + 1; % cind++;
end % }
%
if b < m % if (b < m) {
% // setup for next pass thru loop
for j=0:r-1 % for (j = 0; j < r; j++)
for ii=0:mc-1 % for (ii = 0; ii < mc; ii++)
bpts(ii+1,j+1) = Nextbpts(ii+1,j+1); % bpts[j][ii] = Nextbpts[j][ii];
end
end
for j=r:d % for (j = r; j <= d; j++)
for ii=0:mc-1 % for (ii = 0; ii < mc; ii++)
bpts(ii+1,j+1) = c(ii+1,b-d+j+1); % bpts[j][ii] = ctrl[b-d+j][ii];
end
end
a = b; % a = b;
b = b+1; % b++;
ua = ub; % ua = ub;
% }
else % else
% // end knot
for i=0:ph % for (i = 0; i <= ph; i++)
ik(kind+i+1) = ub; % ik[kind+i] = ub;
end
end
end % }
% End big while loop % // end while loop
%
% *nh = mh - ph - 1;
%
% freevec2mat(ctrl);
% freevec2mat(ictrl);
% freematrix(bezalfs);
% freematrix(bpts);
% freematrix(ebpts);
% freematrix(Nextbpts);
% mxFree(alfs);
%
% return(ierr);
% }
function b = bincoeff(n,k)
% Computes the binomial coefficient.
%
% ( n ) n!
% ( ) = --------
% ( k ) k!(n-k)!
%
% b = bincoeff(n,k)
%
% Algorithm from 'Numerical Recipes in C, 2nd Edition' pg215.
% double bincoeff(int n, int k)
% {
b = floor(0.5+exp(factln(n)-factln(k)-factln(n-k))); % return floor(0.5+exp(factln(n)-factln(k)-factln(n-k)));
% }
function f = factln(n)
% computes ln(n!)
if n <= 1, f = 0; return, end
f = gammaln(n+1); %log(factorial(n));</pre>