Bên cạnh câu lệnh while
đã được giới thiệu, Python cũng có các câu lệnh điều khiển luồng thông thường giống như các ngôn ngữ khác.
4.1. Câu lệnh if
Câu lệnh phổ biến nhất là if
statement. Ví dụ:>>>
>>> x = int(input("Hay nhap vao mot so nguyen: "))
Hay nhap vao mot so nguyen: 42
>>> if x < 0:
... x = 0
... print('So am duoc doi thanh 0')
... elif x == 0:
... print('So khong')
... elif x == 1:
... print('So mot')
... else:
... print('So khac')
...
So khac
Có thể không có hoặc có rất nhiều lệnh elif
còn lệnh else
chỉ có thể có duy nhất hoặc không. Từ khoá ‘elif
’ là viết tắt của ‘else if’, nó giúp tránh việc phải thụt lề quá nhiều. Một chuỗi if
… elif
… elif
… dùng để thay thế cho câu lệnh switch
hoặc case
trong các ngôn ngữ khác.
4.2. Câu lệnh for
Câu lệnh for
trong Python khác một chút so với C và Pascal. Thay vì việc duyệt qua một chuỗi số tăng dần (như trong Pascal) hoặc người dùng sẽ định nghĩa về các bước duyệt và điều kiện dừng (như C), câu lệnh for
của Python duyệt qua các phần tử của chuỗi (một danh sách hoặc xâu) theo thứ tự mà nó xuất hiện trong chuỗi. Ví dụ (no pun intened):>>>
>>> # Tinh do dai cac xau:
... tu = ['meo', 'chuot', 'cho soi']
>>> for t in tu:
... print(t, len(t))
...
meo 3
chuot 5
cho soi 7
Nếu cần sửa chính chuỗi mà bạn đang duyệt qua khi đang ở trong vòng lặp (ví dụ nhân đôi các phần tử), đầu tiên bạn nên sao chép lại chuỗi đó. Việc duyệt qua chuỗi không ngầm sao chép chuỗi. Kí hiệu cắt ở dưới làm cho điều nãy dễ dàng hơn:>>>
>>> for t in tu[:]: # Duyệt qua bản sao của toàn bộ danh sách
... if len(t) > 6:
... tu.insert(0, t)
...
>>> tu
['cho soi', 'meo', 'chuot', 'cho soi']
Với for t in tu:
, ví dụ trên sẽ tạo ra một chuỗi vô hạn, lặp đi lặp lại việc chèn phần tử cho soi
.
4.3. Hàm range()
Nếu bạn muốn duyệt qua một chuỗi các số, hàm range()
được xây dựng sẵn sẽ rát tiện dụng. Nó sẽ sinh ra một chuỗi các số:>>>
>>> for i in range(5):
... print(i)
...
0
1
2
3
4
Điểm kết thúc sẽ không nằm trong chuỗi; range(10)
tạo ra 10 giá trị và các chỉ số phù hợp cho các phần tử của chuỗi có độ dài 10. Có thể làm cho khoảng này bắt đầu từ một số khác hoặc các phần tử tăng lên với khoảng cách khác (với cả khoảng cách âm; thỉnh thoảng việc này được gọi là ‘bước’):
range(5, 10)
5, 6, 7, 8, 9
range(0, 10, 3)
0, 3, 6, 9
range(-10, -100, -30)
-10, -40, -70
Để duyệt qua các chỉ số của chuỗi, bạn có thể kết hợp range()
và len()
như sau:>>>
>>> a = ['Mary', 'had', 'a', 'little', 'lamb']
>>> for i in range(len(a)):
... print(i, a[i])
...
0 Mary
1 had
2 a
3 little
4 lamb
Trong phần lớn trường hợp là như vậy, tuy nhiên, sẽ thuận lợi hơn nếu dùng hàm enumerate()
, xem Looping Techniques.
Có một điều lạ khi bạn in một range (khoảng) ra:>>>
>>> print(range(10))
range(0, 10)
Object trả về bởi range()
được coi như là danh sách, nhưng thực ra không phải. Đây là một object trả về các phần tử liên tiếp của chuỗi mong muốn khi bạn duyệt qua nó nhưng nó không thực sự là một danh sách, điều này giúp giảm bộ nhớ.
Ta gọi một object như thế là iterable, nghĩa là nó phù hợp cho hàm hoặc cấu trúc cần cung cấp các phần tử một cách liên tiếp cho đến khi hết. Chúng ta đã thấy lệnh for
là một iterator như thế. Hàm list()
là một ví dụ khác; nó tạo danh sách từ iterables:>>>
>>> list(range(5))
[0, 1, 2, 3, 4]
Sau này chúng ta sẽ thấy nhiều hàm trả về iterables và nhận iterables với tư cách là tham số.
The break
statement, like in C, breaks out of the innermost enclosing for
or while
loop.
Loop statements may have an else
clause; it is executed when the loop terminates through exhaustion of the list (with for
) or when the condition becomes false (with while
), but not when the loop is terminated by a break
statement. This is exemplified by the following loop, which searches for prime numbers:>>>
>>> for n in range(2, 10):
... for x in range(2, n):
... if n % x == 0:
... print(n, 'equals', x, '*', n//x)
... break
... else:
... # loop fell through without finding a factor
... print(n, 'is a prime number')
...
2 is a prime number
3 is a prime number
4 equals 2 * 2
5 is a prime number
6 equals 2 * 3
7 is a prime number
8 equals 2 * 4
9 equals 3 * 3
(Yes, this is the correct code. Look closely: the else
clause belongs to the for
loop, not the if
statement.)
When used with a loop, the else
clause has more in common with the else
clause of a try
statement than it does that of if
statements: a try
statement’s else
clause runs when no exception occurs, and a loop’s else
clause runs when no break
occurs. For more on the try
statement and exceptions, see Handling Exceptions.
The continue
statement, also borrowed from C, continues with the next iteration of the loop:>>>
>>> for num in range(2, 10):
... if num % 2 == 0:
... print("Found an even number", num)
... continue
... print("Found a number", num)
Found an even number 2
Found a number 3
Found an even number 4
Found a number 5
Found an even number 6
Found a number 7
Found an even number 8
Found a number 9
4.5. pass
Statements
The pass
statement does nothing. It can be used when a statement is required syntactically but the program requires no action. For example:>>>
>>> while True:
... pass # Busy-wait for keyboard interrupt (Ctrl+C)
...
This is commonly used for creating minimal classes:>>>
>>> class MyEmptyClass:
... pass
...
Another place pass
can be used is as a place-holder for a function or conditional body when you are working on new code, allowing you to keep thinking at a more abstract level. The pass
is silently ignored:>>>
>>> def initlog(*args):
... pass # Remember to implement this!
...
We can create a function that writes the Fibonacci series to an arbitrary boundary:>>>
>>> def fib(n): # write Fibonacci series up to n
... """Print a Fibonacci series up to n."""
... a, b = 0, 1
... while a < n:
... print(a, end=' ')
... a, b = b, a+b
... print()
...
>>> # Now call the function we just defined:
... fib(2000)
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597
The keyword def
introduces a function definition. It must be followed by the function name and the parenthesized list of formal parameters. The statements that form the body of the function start at the next line, and must be indented.
The first statement of the function body can optionally be a string literal; this string literal is the function’s documentation string, or docstring. (More about docstrings can be found in the section Documentation Strings.) There are tools which use docstrings to automatically produce online or printed documentation, or to let the user interactively browse through code; it’s good practice to include docstrings in code that you write, so make a habit of it.
The execution of a function introduces a new symbol table used for the local variables of the function. More precisely, all variable assignments in a function store the value in the local symbol table; whereas variable references first look in the local symbol table, then in the local symbol tables of enclosing functions, then in the global symbol table, and finally in the table of built-in names. Thus, global variables cannot be directly assigned a value within a function (unless named in a global
statement), although they may be referenced.
The actual parameters (arguments) to a function call are introduced in the local symbol table of the called function when it is called; thus, arguments are passed using call by value (where the value is always an object reference, not the value of the object). [1] When a function calls another function, a new local symbol table is created for that call.
A function definition introduces the function name in the current symbol table. The value of the function name has a type that is recognized by the interpreter as a user-defined function. This value can be assigned to another name which can then also be used as a function. This serves as a general renaming mechanism:>>>
>>> fib
<function fib at 10042ed0>
>>> f = fib
>>> f(100)
0 1 1 2 3 5 8 13 21 34 55 89
Coming from other languages, you might object that fib
is not a function but a procedure since it doesn’t return a value. In fact, even functions without a return
statement do return a value, albeit a rather boring one. This value is called None
(it’s a built-in name). Writing the value None
is normally suppressed by the interpreter if it would be the only value written. You can see it if you really want to using print()
:>>>
>>> fib(0)
>>> print(fib(0))
None
It is simple to write a function that returns a list of the numbers of the Fibonacci series, instead of printing it:>>>
>>> def fib2(n): # return Fibonacci series up to n
... """Return a list containing the Fibonacci series up to n."""
... result = []
... a, b = 0, 1
... while a < n:
... result.append(a) # see below
... a, b = b, a+b
... return result
...
>>> f100 = fib2(100) # call it
>>> f100 # write the result
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
This example, as usual, demonstrates some new Python features:
- The
return
statement returns with a value from a function.return
without an expression argument returnsNone
. Falling off the end of a function also returnsNone
. - The statement
result.append(a)
calls a method of the list objectresult
. A method is a function that ‘belongs’ to an object and is namedobj.methodname
, whereobj
is some object (this may be an expression), andmethodname
is the name of a method that is defined by the object’s type. Different types define different methods. Methods of different types may have the same name without causing ambiguity. (It is possible to define your own object types and methods, using classes, see Classes) The methodappend()
shown in the example is defined for list objects; it adds a new element at the end of the list. In this example it is equivalent toresult = result + [a]
, but more efficient.
It is also possible to define functions with a variable number of arguments. There are three forms, which can be combined.
The most useful form is to specify a default value for one or more arguments. This creates a function that can be called with fewer arguments than it is defined to allow. For example:
def ask_ok(prompt, retries=4, reminder='Please try again!'):
while True:
ok = input(prompt)
if ok in ('y', 'ye', 'yes'):
return True
if ok in ('n', 'no', 'nop', 'nope'):
return False
retries = retries - 1
if retries < 0:
raise ValueError('invalid user response')
print(reminder)
This function can be called in several ways:
- giving only the mandatory argument:
ask_ok('Do you really want to quit?')
- giving one of the optional arguments:
ask_ok('OK to overwrite the file?', 2)
- or even giving all arguments:
ask_ok('OK to overwrite the file?', 2, 'Come on, only yes orno!')
This example also introduces the in
keyword. This tests whether or not a sequence contains a certain value.
The default values are evaluated at the point of function definition in the defining scope, so that
i = 5
def f(arg=i):
print(arg)
i = 6
f()
will print 5
.
Important warning: The default value is evaluated only once. This makes a difference when the default is a mutable object such as a list, dictionary, or instances of most classes. For example, the following function accumulates the arguments passed to it on subsequent calls:
def f(a, L=[]):
L.append(a)
return L
print(f(1))
print(f(2))
print(f(3))
This will print
[1]
[1, 2]
[1, 2, 3]
If you don’t want the default to be shared between subsequent calls, you can write the function like this instead:
def f(a, L=None):
if L is None:
L = []
L.append(a)
return L
Functions can also be called using keyword arguments of the form kwarg=value
. For instance, the following function:
def parrot(voltage, state='a stiff', action='voom', type='Norwegian Blue'):
print("-- This parrot wouldn't", action, end=' ')
print("if you put", voltage, "volts through it.")
print("-- Lovely plumage, the", type)
print("-- It's", state, "!")
accepts one required argument (voltage
) and three optional arguments (state
, action
, and type
). This function can be called in any of the following ways:
parrot(1000) # 1 positional argument
parrot(voltage=1000) # 1 keyword argument
parrot(voltage=1000000, action='VOOOOOM') # 2 keyword arguments
parrot(action='VOOOOOM', voltage=1000000) # 2 keyword arguments
parrot('a million', 'bereft of life', 'jump') # 3 positional arguments
parrot('a thousand', state='pushing up the daisies') # 1 positional, 1 keyword
but all the following calls would be invalid:
parrot() # required argument missing
parrot(voltage=5.0, 'dead') # non-keyword argument after a keyword argument
parrot(110, voltage=220) # duplicate value for the same argument
parrot(actor='John Cleese') # unknown keyword argument
In a function call, keyword arguments must follow positional arguments. All the keyword arguments passed must match one of the arguments accepted by the function (e.g. actor
is not a valid argument for the parrot
function), and their order is not important. This also includes non-optional arguments (e.g. parrot(voltage=1000)
is valid too). No argument may receive a value more than once. Here’s an example that fails due to this restriction:>>>
>>> def function(a):
... pass
...
>>> function(0, a=0)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: function() got multiple values for keyword argument 'a'
When a final formal parameter of the form **name
is present, it receives a dictionary (see Mapping Types — dict) containing all keyword arguments except for those corresponding to a formal parameter. This may be combined with a formal parameter of the form *name
(described in the next subsection) which receives a tuple containing the positional arguments beyond the formal parameter list. (*name
must occur before **name
.) For example, if we define a function like this:
def cheeseshop(kind, *arguments, **keywords):
print("-- Do you have any", kind, "?")
print("-- I'm sorry, we're all out of", kind)
for arg in arguments:
print(arg)
print("-" * 40)
for kw in keywords:
print(kw, ":", keywords[kw])
It could be called like this:
cheeseshop("Limburger", "It's very runny, sir.",
"It's really very, VERY runny, sir.",
shopkeeper="Michael Palin",
client="John Cleese",
sketch="Cheese Shop Sketch")
and of course it would print:
-- Do you have any Limburger ?
-- I'm sorry, we're all out of Limburger
It's very runny, sir.
It's really very, VERY runny, sir.
----------------------------------------
shopkeeper : Michael Palin
client : John Cleese
sketch : Cheese Shop Sketch
Note that the order in which the keyword arguments are printed is guaranteed to match the order in which they were provided in the function call.
Finally, the least frequently used option is to specify that a function can be called with an arbitrary number of arguments. These arguments will be wrapped up in a tuple (see Tuples and Sequences). Before the variable number of arguments, zero or more normal arguments may occur.
def write_multiple_items(file, separator, *args):
file.write(separator.join(args))
Normally, these variadic
arguments will be last in the list of formal parameters, because they scoop up all remaining input arguments that are passed to the function. Any formal parameters which occur after the *args
parameter are ‘keyword-only’ arguments, meaning that they can only be used as keywords rather than positional arguments.>>>
>>> def concat(*args, sep="/"):
... return sep.join(args)
...
>>> concat("earth", "mars", "venus")
'earth/mars/venus'
>>> concat("earth", "mars", "venus", sep=".")
'earth.mars.venus'
The reverse situation occurs when the arguments are already in a list or tuple but need to be unpacked for a function call requiring separate positional arguments. For instance, the built-in range()
function expects separate start and stop arguments. If they are not available separately, write the function call with the *
-operator to unpack the arguments out of a list or tuple:>>>
>>> list(range(3, 6)) # normal call with separate arguments
[3, 4, 5]
>>> args = [3, 6]
>>> list(range(*args)) # call with arguments unpacked from a list
[3, 4, 5]
In the same fashion, dictionaries can deliver keyword arguments with the **
-operator:>>>
>>> def parrot(voltage, state='a stiff', action='voom'):
... print("-- This parrot wouldn't", action, end=' ')
... print("if you put", voltage, "volts through it.", end=' ')
... print("E's", state, "!")
...
>>> d = {"voltage": "four million", "state": "bleedin' demised", "action": "VOOM"}
>>> parrot(**d)
-- This parrot wouldn't VOOM if you put four million volts through it. E's bleedin' demised !
Small anonymous functions can be created with the lambda
keyword. This function returns the sum of its two arguments: lambda a, b: a+b
. Lambda functions can be used wherever function objects are required. They are syntactically restricted to a single expression. Semantically, they are just syntactic sugar for a normal function definition. Like nested function definitions, lambda functions can reference variables from the containing scope:>>>
>>> def make_incrementor(n):
... return lambda x: x + n
...
>>> f = make_incrementor(42)
>>> f(0)
42
>>> f(1)
43
The above example uses a lambda expression to return a function. Another use is to pass a small function as an argument:>>>
>>> pairs = [(1, 'one'), (2, 'two'), (3, 'three'), (4, 'four')]
>>> pairs.sort(key=lambda pair: pair[1])
>>> pairs
[(4, 'four'), (1, 'one'), (3, 'three'), (2, 'two')]
Here are some conventions about the content and formatting of documentation strings.
The first line should always be a short, concise summary of the object’s purpose. For brevity, it should not explicitly state the object’s name or type, since these are available by other means (except if the name happens to be a verb describing a function’s operation). This line should begin with a capital letter and end with a period.
If there are more lines in the documentation string, the second line should be blank, visually separating the summary from the rest of the description. The following lines should be one or more paragraphs describing the object’s calling conventions, its side effects, etc.
The Python parser does not strip indentation from multi-line string literals in Python, so tools that process documentation have to strip indentation if desired. This is done using the following convention. The first non-blank line after the first line of the string determines the amount of indentation for the entire documentation string. (We can’t use the first line since it is generally adjacent to the string’s opening quotes so its indentation is not apparent in the string literal.) Whitespace “equivalent” to this indentation is then stripped from the start of all lines of the string. Lines that are indented less should not occur, but if they occur all their leading whitespace should be stripped. Equivalence of whitespace should be tested after expansion of tabs (to 8 spaces, normally).
Here is an example of a multi-line docstring:>>>
>>> def my_function():
... """Do nothing, but document it.
...
... No, really, it doesn't do anything.
... """
... pass
...
>>> print(my_function.__doc__)
Do nothing, but document it.
No, really, it doesn't do anything.
Function annotations are completely optional metadata information about the types used by user-defined functions (see PEP 3107 and PEP 484 for more information).
Annotations are stored in the __annotations__
attribute of the function as a dictionary and have no effect on any other part of the function. Parameter annotations are defined by a colon after the parameter name, followed by an expression evaluating to the value of the annotation. Return annotations are defined by a literal ->
, followed by an expression, between the parameter list and the colon denoting the end of the def
statement. The following example has a positional argument, a keyword argument, and the return value annotated:>>>
>>> def f(ham: str, eggs: str = 'eggs') -> str:
... print("Annotations:", f.__annotations__)
... print("Arguments:", ham, eggs)
... return ham + ' and ' + eggs
...
>>> f('spam')
Annotations: {'ham': <class 'str'>, 'return': <class 'str'>, 'eggs': <class 'str'>}
Arguments: spam eggs
'spam and eggs'
Now that you are about to write longer, more complex pieces of Python, it is a good time to talk about coding style. Most languages can be written (or more concise, formatted) in different styles; some are more readable than others. Making it easy for others to read your code is always a good idea, and adopting a nice coding style helps tremendously for that.
For Python, PEP 8 has emerged as the style guide that most projects adhere to; it promotes a very readable and eye-pleasing coding style. Every Python developer should read it at some point; here are the most important points extracted for you:
-
Use 4-space indentation, and no tabs.
4 spaces are a good compromise between small indentation (allows greater nesting depth) and large indentation (easier to read). Tabs introduce confusion, and are best left out.
-
Wrap lines so that they don’t exceed 79 characters.
This helps users with small displays and makes it possible to have several code files side-by-side on larger displays.
-
Use blank lines to separate functions and classes, and larger blocks of code inside functions.
-
When possible, put comments on a line of their own.
-
Use docstrings.
-
Use spaces around operators and after commas, but not directly inside bracketing constructs:
a = f(1,2) + g(3, 4)
. -
Name your classes and functions consistently; the convention is to use
CamelCase
for classes andlower_case_with_underscores
for functions and methods. Always useself
as the name for the first method argument (see A First Look at Classes for more on classes and methods). -
Don’t use fancy encodings if your code is meant to be used in international environments. Python’s default, UTF-8, or even plain ASCII work best in any case.
-
Likewise, don’t use non-ASCII characters in identifiers if there is only the slightest chance people speaking a different language will read or maintain the code.
Footnotes
| [1] | Actually, call by object reference would be a better description, since if a mutable object is passed, the caller will see any changes the callee makes to it (items inserted into a list). | | --- |