-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathpsd.py
205 lines (159 loc) · 6.55 KB
/
psd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
from pyrocko.gui.snuffling import Snuffling, Param, Switch
import numpy as num
from pyrocko.plot import graph_colors as colors
def to01(c):
return c[0]/255., c[1]/255., c[2]/255.
class PlotPSD(Snuffling):
'''
<html>
<body>
<h1>Plot PSD (Power Spectral Density)</h1>
Visible or selected data is cut into windows of 2 x 'Window length',
tapered with a Hanning taper, FFTed, sqared, normalized and gathered by
mean or median and percentiles.
</body>
</html>
'''
def setup(self):
'''Customization of the snuffling.'''
self.set_name('Plot PSD')
self.add_parameter(
Param('Window length [s]:', 'tinc', 100, 0.1, 10000.,
high_is_none=True))
self.add_parameter(Switch('Save figure', 'save', False))
self.add_parameter(Switch('Join stations', 'join_stations', False))
self.add_parameter(Switch('Show mean', 'mean', False))
self.add_parameter(Switch('Show logmean', 'logmean', False))
self.add_parameter(Switch('Show median', 'median', True))
self.add_parameter(Switch('Show percentiles', 'percentiles', False))
self.add_parameter(Switch('Show min and max', 'minmax', False))
self.set_live_update(False)
def call(self):
'''Main work routine of the snuffling.'''
by_nslc = {}
if self.tinc is not None:
tpad = self.tinc/2
else:
tpad = 0.0
for traces in self.chopper_selected_traces(
tinc=self.tinc, tpad=tpad,
want_incomplete=False, fallback=True):
for tr in traces:
nslc = tr.nslc_id
if self.tinc is not None:
nwant = int(self.tinc * 2 / tr.deltat)
if nwant != tr.data_len():
if tr.data_len() == nwant + 1:
tr.set_ydata(tr.get_ydata()[:-1])
else:
continue
tr.ydata = tr.ydata.astype(num.float)
tr.ydata -= tr.ydata.mean()
if self.tinc is not None:
win = num.hanning(tr.data_len())
else:
win = num.ones(tr.data_len())
tr.ydata *= win
f, a = tr.spectrum(pad_to_pow2=True)
a = num.abs(a)**2
a *= tr.deltat * 2. / num.sum(win**2)
a[0] /= 2.
a[a.size//2] /= 2.
if nslc not in by_nslc:
by_nslc[nslc] = []
by_nslc[nslc].append((f, a))
if not by_nslc:
self.fail('No complete data windows could be exctracted for ' +
'given selection')
fframe = self.figure_frame()
fig = fframe.gcf()
if self.join_stations:
grouping = lambda k: (k[3],)
labeling = lambda k: ' '.join(x for x in k[:-1] if x)
else:
grouping = lambda k: k
labeling = lambda k: None
group_keys = sorted(set(grouping(k) for k in by_nslc.keys()))
p = None
ncols = len(group_keys) // 5 + 1
nrows = (len(group_keys)-1) // ncols + 1
axes = []
for i, group_key in enumerate(group_keys):
p = fig.add_subplot(nrows, ncols, i+1, sharex=p, sharey=p)
axes.append(p)
legend = False
for j, k in enumerate(sorted(by_nslc.keys())):
color = to01(colors[j % len(colors)])
color_trans1 = color + (0.5,)
color_trans2 = color + (0.25,)
group = by_nslc[k]
if grouping(k) == group_key:
a_list = [a for (f, a) in group]
a = num.vstack(a_list)
if self.percentiles:
p10 = num.percentile(a, 10., axis=0)
p90 = num.percentile(a, 90., axis=0)
p.fill_between(
f[1:], p10[1:], p90[1:], color=color_trans1)
if self.minmax:
p0 = num.percentile(a, 0., axis=0)
p100 = num.percentile(a, 100., axis=0)
p.fill_between(
f[1:], p0[1:], p100[1:], color=color_trans2)
lab = labeling(k)
if self.mean:
mean = num.mean(a, axis=0)
p.plot(f[1:], mean[1:], label=lab, color=color)
if lab:
legend = True
lab = None
if self.logmean:
logmean = num.exp(num.mean(num.log(a), axis=0))
p.plot(f[1:], logmean[1:], label=lab, color=color)
if lab:
legend = True
lab = None
if self.median:
p50 = num.median(a, axis=0)
p.plot(f[1:], p50[1:], label=lab, color=color)
if lab:
legend = True
lab = None
fmin = min(f[1] for (f, a) in group)
fmax = max(f[-1] for (f, a) in group)
if self.tinc is not None:
fmin = max(fmin, 1.0/self.tinc)
p.set_title(
' '.join(group_key), ha='right', va='top', x=0.99, y=0.9)
p.grid()
p.set_xscale('log')
p.set_yscale('log')
if i/ncols == (len(group_keys)-1)/ncols:
p.set_xlabel('Frequency [Hz]')
if i % ncols == 0:
p.set_ylabel('PSD')
p.set_xlim(fmin, fmax)
if legend:
p.legend(loc='lower left', prop=dict(size=9))
for i, p in enumerate(axes):
if i/ncols != (len(group_keys)-1)/ncols:
for t in p.get_xticklabels():
t.set_visible(False)
if i % ncols != 0:
for t in p.get_yticklabels():
t.set_visible(False)
else:
tls = p.get_yticklabels()
if len(tls) > 8:
for t in tls[1::2]:
t.set_visible(False)
try:
fig.tight_layout()
except AttributeError:
pass
if self.save:
fig.savefig(self.output_filename(dir='psd.pdf'))
fig.canvas.draw()
def __snufflings__():
'''Returns a list of snufflings to be exported by this module.'''
return [PlotPSD()]