-
Notifications
You must be signed in to change notification settings - Fork 21
/
eeg_slds.py
518 lines (440 loc) · 19.2 KB
/
eeg_slds.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
# Copyright Contributors to the Pyro project.
# SPDX-License-Identifier: Apache-2.0
"""
Example: Switching Linear Dynamical System EEG
==============================================
We use a switching linear dynamical system [1] to model a EEG time series dataset.
For inference we use a moment-matching approximation enabled by
`funsor.interpretations.moment_matching`.
References
[1] Anderson, B., and J. Moore. "Optimal filtering. Prentice-Hall, Englewood Cliffs." New Jersey (1979).
"""
import argparse
import time
from collections import OrderedDict
from os.path import exists
from urllib.request import urlopen
import numpy as np
import pyro
import torch
import torch.nn as nn
import funsor
import funsor.ops as ops
import funsor.torch.distributions as dist
from funsor.pyro.convert import (
funsor_to_cat_and_mvn,
funsor_to_mvn,
matrix_and_mvn_to_funsor,
mvn_to_funsor,
)
# download dataset from UCI archive
def download_data():
if not exists("eeg.dat"):
url = "http://archive.ics.uci.edu/ml/machine-learning-databases/00264/EEG%20Eye%20State.arff"
with open("eeg.dat", "wb") as f:
f.write(urlopen(url).read())
class SLDS(nn.Module):
def __init__(
self,
num_components, # the number of switching states K
hidden_dim, # the dimension of the continuous latent space
obs_dim, # the dimension of the continuous outputs
fine_transition_matrix=True, # controls whether the transition matrix depends on s_t
fine_transition_noise=False, # controls whether the transition noise depends on s_t
fine_observation_matrix=False, # controls whether the observation matrix depends on s_t
fine_observation_noise=False, # controls whether the observation noise depends on s_t
moment_matching_lag=1,
): # controls the expense of the moment matching approximation
self.num_components = num_components
self.hidden_dim = hidden_dim
self.obs_dim = obs_dim
self.moment_matching_lag = moment_matching_lag
self.fine_transition_noise = fine_transition_noise
self.fine_observation_matrix = fine_observation_matrix
self.fine_observation_noise = fine_observation_noise
self.fine_transition_matrix = fine_transition_matrix
assert moment_matching_lag > 0
assert (
fine_transition_noise
or fine_observation_matrix
or fine_observation_noise
or fine_transition_matrix
), (
"The continuous dynamics need to be coupled to the discrete dynamics in at least one way [use at "
+ "least one of the arguments --ftn --ftm --fon --fom]"
)
super(SLDS, self).__init__()
# initialize the various parameters of the model
self.transition_logits = nn.Parameter(
0.1 * torch.randn(num_components, num_components)
)
if fine_transition_matrix:
transition_matrix = torch.eye(hidden_dim) + 0.05 * torch.randn(
num_components, hidden_dim, hidden_dim
)
else:
transition_matrix = torch.eye(hidden_dim) + 0.05 * torch.randn(
hidden_dim, hidden_dim
)
self.transition_matrix = nn.Parameter(transition_matrix)
if fine_transition_noise:
self.log_transition_noise = nn.Parameter(
0.1 * torch.randn(num_components, hidden_dim)
)
else:
self.log_transition_noise = nn.Parameter(0.1 * torch.randn(hidden_dim))
if fine_observation_matrix:
self.observation_matrix = nn.Parameter(
0.3 * torch.randn(num_components, hidden_dim, obs_dim)
)
else:
self.observation_matrix = nn.Parameter(
0.3 * torch.randn(hidden_dim, obs_dim)
)
if fine_observation_noise:
self.log_obs_noise = nn.Parameter(
0.1 * torch.randn(num_components, obs_dim)
)
else:
self.log_obs_noise = nn.Parameter(0.1 * torch.randn(obs_dim))
# define the prior distribution p(x_0) over the continuous latent at the initial time step t=0
x_init_mvn = pyro.distributions.MultivariateNormal(
torch.zeros(self.hidden_dim), torch.eye(self.hidden_dim)
)
self.x_init_mvn = mvn_to_funsor(
x_init_mvn,
real_inputs=OrderedDict([("x_0", funsor.Reals[self.hidden_dim])]),
)
# we construct the various funsors used to compute the marginal log probability and other model quantities.
# these funsors depend on the various model parameters.
def get_tensors_and_dists(self):
# normalize the transition probabilities
trans_logits = self.transition_logits - self.transition_logits.logsumexp(
dim=-1, keepdim=True
)
trans_probs = funsor.Tensor(
trans_logits, OrderedDict([("s", funsor.Bint[self.num_components])])
)
trans_mvn = pyro.distributions.MultivariateNormal(
torch.zeros(self.hidden_dim), self.log_transition_noise.exp().diag_embed()
)
obs_mvn = pyro.distributions.MultivariateNormal(
torch.zeros(self.obs_dim), self.log_obs_noise.exp().diag_embed()
)
event_dims = (
("s",) if self.fine_transition_matrix or self.fine_transition_noise else ()
)
x_trans_dist = matrix_and_mvn_to_funsor(
self.transition_matrix, trans_mvn, event_dims, "x", "y"
)
event_dims = (
("s",)
if self.fine_observation_matrix or self.fine_observation_noise
else ()
)
y_dist = matrix_and_mvn_to_funsor(
self.observation_matrix, obs_mvn, event_dims, "x", "y"
)
return trans_logits, trans_probs, trans_mvn, obs_mvn, x_trans_dist, y_dist
# compute the marginal log probability of the observed data using a moment-matching approximation
@funsor.interpretations.moment_matching
def log_prob(self, data):
(
trans_logits,
trans_probs,
trans_mvn,
obs_mvn,
x_trans_dist,
y_dist,
) = self.get_tensors_and_dists()
log_prob = funsor.Number(0.0)
s_vars = {-1: funsor.Tensor(torch.tensor(0), dtype=self.num_components)}
x_vars = {}
for t, y in enumerate(data):
# construct free variables for s_t and x_t
s_vars[t] = funsor.Variable(f"s_{t}", funsor.Bint[self.num_components])
x_vars[t] = funsor.Variable(f"x_{t}", funsor.Reals[self.hidden_dim])
# incorporate the discrete switching dynamics
log_prob += dist.Categorical(trans_probs(s=s_vars[t - 1]), value=s_vars[t])
# incorporate the prior term p(x_t | x_{t-1})
if t == 0:
log_prob += self.x_init_mvn(value=x_vars[t])
else:
log_prob += x_trans_dist(s=s_vars[t], x=x_vars[t - 1], y=x_vars[t])
# do a moment-matching reduction. at this point log_prob depends on (moment_matching_lag + 1)-many
# pairs of free variables.
if t > self.moment_matching_lag - 1:
log_prob = log_prob.reduce(
ops.logaddexp,
{
s_vars[t - self.moment_matching_lag],
x_vars[t - self.moment_matching_lag],
},
)
# incorporate the observation p(y_t | x_t, s_t)
log_prob += y_dist(s=s_vars[t], x=x_vars[t], y=y)
T = data.shape[0]
# reduce any remaining free variables
for t in range(self.moment_matching_lag):
log_prob = log_prob.reduce(
ops.logaddexp,
{
s_vars[T - self.moment_matching_lag + t],
x_vars[T - self.moment_matching_lag + t],
},
)
# assert that we've reduced all the free variables in log_prob
assert not log_prob.inputs, "unexpected free variables remain"
# return the PyTorch tensor behind log_prob (which we can directly differentiate)
return log_prob.data
# do filtering, prediction, and smoothing using a moment-matching approximation.
# here we implicitly use a moment matching lag of L = 1. the general logic follows
# the logic in the log_prob method.
@torch.no_grad()
@funsor.interpretations.moment_matching
def filter_and_predict(self, data, smoothing=False):
(
trans_logits,
trans_probs,
trans_mvn,
obs_mvn,
x_trans_dist,
y_dist,
) = self.get_tensors_and_dists()
log_prob = funsor.Number(0.0)
s_vars = {-1: funsor.Tensor(torch.tensor(0), dtype=self.num_components)}
x_vars = {-1: None}
predictive_x_dists, predictive_y_dists, filtering_dists = [], [], []
test_LLs = []
for t, y in enumerate(data):
s_vars[t] = funsor.Variable(f"s_{t}", funsor.Bint[self.num_components])
x_vars[t] = funsor.Variable(f"x_{t}", funsor.Reals[self.hidden_dim])
log_prob += dist.Categorical(trans_probs(s=s_vars[t - 1]), value=s_vars[t])
if t == 0:
log_prob += self.x_init_mvn(value=x_vars[t])
else:
log_prob += x_trans_dist(s=s_vars[t], x=x_vars[t - 1], y=x_vars[t])
if t > 0:
log_prob = log_prob.reduce(
ops.logaddexp, {s_vars[t - 1], x_vars[t - 1]}
)
# do 1-step prediction and compute test LL
if t > 0:
predictive_x_dists.append(log_prob)
_log_prob = log_prob - log_prob.reduce(ops.logaddexp)
predictive_y_dist = y_dist(s=s_vars[t], x=x_vars[t]) + _log_prob
test_LLs.append(
predictive_y_dist(y=y).reduce(ops.logaddexp).data.item()
)
predictive_y_dist = predictive_y_dist.reduce(
ops.logaddexp, {f"x_{t}", f"s_{t}"}
)
predictive_y_dists.append(funsor_to_mvn(predictive_y_dist, 0, ()))
log_prob += y_dist(s=s_vars[t], x=x_vars[t], y=y)
# save filtering dists for forward-backward smoothing
if smoothing:
filtering_dists.append(log_prob)
# do the backward recursion using previously computed ingredients
if smoothing:
# seed the backward recursion with the filtering distribution at t=T
smoothing_dists = [filtering_dists[-1]]
T = data.size(0)
s_vars = {
t: funsor.Variable(f"s_{t}", funsor.Bint[self.num_components])
for t in range(T)
}
x_vars = {
t: funsor.Variable(f"x_{t}", funsor.Reals[self.hidden_dim])
for t in range(T)
}
# do the backward recursion.
# let p[t|t-1] be the predictive distribution at time step t.
# let p[t|t] be the filtering distribution at time step t.
# let f[t] denote the prior (transition) density at time step t.
# then the smoothing distribution p[t|T] at time step t is
# given by the following recursion.
# p[t-1|T] = p[t-1|t-1] <p[t|T] f[t] / p[t|t-1]>
# where <...> denotes integration of the latent variables at time step t.
for t in reversed(range(T - 1)):
integral = smoothing_dists[-1] - predictive_x_dists[t]
integral += dist.Categorical(
trans_probs(s=s_vars[t]), value=s_vars[t + 1]
)
integral += x_trans_dist(s=s_vars[t], x=x_vars[t], y=x_vars[t + 1])
integral = integral.reduce(
ops.logaddexp, {s_vars[t + 1], x_vars[t + 1]}
)
smoothing_dists.append(filtering_dists[t] + integral)
# compute predictive test MSE and predictive variances
predictive_means = torch.stack([d.mean for d in predictive_y_dists]) # T-1 ydim
predictive_vars = torch.stack(
[d.covariance_matrix.diagonal(dim1=-1, dim2=-2) for d in predictive_y_dists]
)
predictive_mse = (predictive_means - data[1:, :]).pow(2.0).mean(-1)
if smoothing:
# compute smoothed mean function
smoothing_dists = [
funsor_to_cat_and_mvn(d, 0, (f"s_{t}",))
for t, d in enumerate(reversed(smoothing_dists))
]
means = torch.stack([d[1].mean for d in smoothing_dists]) # T 2 xdim
means = torch.matmul(means.unsqueeze(-2), self.observation_matrix).squeeze(
-2
) # T 2 ydim
probs = torch.stack([d[0].logits for d in smoothing_dists]).exp()
probs = probs / probs.sum(-1, keepdim=True) # T 2
smoothing_means = (probs.unsqueeze(-1) * means).sum(-2) # T ydim
smoothing_probs = probs[:, 1]
return (
predictive_mse,
torch.tensor(np.array(test_LLs)),
predictive_means,
predictive_vars,
smoothing_means,
smoothing_probs,
)
else:
return predictive_mse, torch.tensor(np.array(test_LLs))
def main(args):
funsor.set_backend("torch")
# download and pre-process EEG data if not in test mode
if not args.test:
download_data()
N_val, N_test = 149, 200
data = np.loadtxt("eeg.dat", delimiter=",", skiprows=19)
print(f"[raw data shape] {data.shape}")
data = data[::20, :]
print(f"[data shape after thinning] {data.shape}")
eye_state = [int(d) for d in data[:, -1].tolist()]
data = torch.tensor(data[:, :-1]).float()
# in test mode (for continuous integration on github) so create fake data
else:
data = torch.randn(10, 3)
N_val, N_test = 2, 2
T, obs_dim = data.shape
N_train = T - N_test - N_val
np.random.seed(0)
rand_perm = np.random.permutation(N_val + N_test)
val_indices = rand_perm[0:N_val]
test_indices = rand_perm[N_val:]
data_mean = data[0:N_train, :].mean(0)
data -= data_mean
data_std = data[0:N_train, :].std(0)
data /= data_std
print(f"Length of time series T: {T} Observation dimension: {obs_dim}")
print(f"N_train: {N_train} N_val: {N_val} N_test: {N_test}")
torch.manual_seed(args.seed)
# set up model
slds = SLDS(
num_components=args.num_components,
hidden_dim=args.hidden_dim,
obs_dim=obs_dim,
fine_observation_noise=args.fon,
fine_transition_noise=args.ftn,
fine_observation_matrix=args.fom,
fine_transition_matrix=args.ftm,
moment_matching_lag=args.moment_matching_lag,
)
# set up optimizer
adam = torch.optim.Adam(
slds.parameters(),
lr=args.learning_rate,
betas=(args.beta1, 0.999),
amsgrad=True,
)
scheduler = torch.optim.lr_scheduler.ExponentialLR(adam, gamma=args.gamma)
ts = [time.time()]
report_frequency = 1
# training loop
for step in range(args.num_steps):
nll = -slds.log_prob(data[0:N_train, :]) / N_train
nll.backward()
if step == 5:
scheduler.base_lrs[0] *= 0.20
adam.step()
scheduler.step()
adam.zero_grad()
if step % report_frequency == 0 or step == args.num_steps - 1:
step_dt = ts[-1] - ts[-2] if step > 0 else 0.0
pred_mse, pred_LLs = slds.filter_and_predict(
data[0 : N_train + N_val + N_test, :]
)
val_mse = pred_mse[val_indices].mean().item()
test_mse = pred_mse[test_indices].mean().item()
val_ll = pred_LLs[val_indices].mean().item()
test_ll = pred_LLs[test_indices].mean().item()
stats = "[step %03d] train_nll: %.5f val_mse: %.5f val_ll: %.5f test_mse: %.5f test_ll: %.5f\t(dt: %.2f)"
print(
stats % (step, nll.item(), val_mse, val_ll, test_mse, test_ll, step_dt)
)
ts.append(time.time())
# plot predictions and smoothed means
if args.plot:
assert not args.test
(
predicted_mse,
LLs,
pred_means,
pred_vars,
smooth_means,
smooth_probs,
) = slds.filter_and_predict(data, smoothing=True)
pred_means = pred_means.data.numpy()
pred_stds = pred_vars.sqrt().data.numpy()
smooth_means = smooth_means.data.numpy()
smooth_probs = smooth_probs.data.numpy()
import matplotlib
matplotlib.use("Agg") # noqa: E402
import matplotlib.pyplot as plt
f, axes = plt.subplots(4, 1, figsize=(12, 8), sharex=True)
T = data.size(0)
N_valtest = N_val + N_test
to_seconds = 117.0 / T
for k, ax in enumerate(axes[:-1]):
which = [0, 4, 10][k]
ax.plot(to_seconds * np.arange(T), data[:, which], "ko", markersize=2)
ax.plot(
to_seconds * np.arange(N_train),
smooth_means[:N_train, which],
ls="solid",
color="r",
)
ax.plot(
to_seconds * (N_train + np.arange(N_valtest)),
pred_means[-N_valtest:, which],
ls="solid",
color="b",
)
ax.fill_between(
to_seconds * (N_train + np.arange(N_valtest)),
pred_means[-N_valtest:, which] - 1.645 * pred_stds[-N_valtest:, which],
pred_means[-N_valtest:, which] + 1.645 * pred_stds[-N_valtest:, which],
color="lightblue",
)
ax.set_ylabel(f"$y_{which + 1}$", fontsize=20)
ax.tick_params(axis="both", which="major", labelsize=14)
axes[-1].plot(to_seconds * np.arange(T), eye_state, "k", ls="solid")
axes[-1].plot(to_seconds * np.arange(T), smooth_probs, "r", ls="solid")
axes[-1].set_xlabel("Time (s)", fontsize=20)
axes[-1].set_ylabel("Eye state", fontsize=20)
axes[-1].tick_params(axis="both", which="major", labelsize=14)
plt.tight_layout(pad=0.7)
plt.savefig("eeg.pdf")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Switching linear dynamical system")
parser.add_argument("-n", "--num-steps", default=3, type=int)
parser.add_argument("-s", "--seed", default=15, type=int)
parser.add_argument("-hd", "--hidden-dim", default=5, type=int)
parser.add_argument("-k", "--num-components", default=2, type=int)
parser.add_argument("-lr", "--learning-rate", default=0.5, type=float)
parser.add_argument("-b1", "--beta1", default=0.75, type=float)
parser.add_argument("-g", "--gamma", default=0.99, type=float)
parser.add_argument("-mml", "--moment-matching-lag", default=1, type=int)
parser.add_argument("--plot", action="store_true")
parser.add_argument("--fon", action="store_true")
parser.add_argument("--ftm", action="store_true")
parser.add_argument("--fom", action="store_true")
parser.add_argument("--ftn", action="store_true")
parser.add_argument("--test", action="store_true")
args = parser.parse_args()
main(args)