-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathcount_number_of_nice_subarrays.rs
47 lines (43 loc) · 1.33 KB
/
count_number_of_nice_subarrays.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
//! https://leetcode.com/problems/count-number-of-nice-subarrays/
/// O(n^2) time complex, not passed
fn number_of_subarrays_prefix_sum_brute_force(mut nums: Vec<i32>, k: i32) -> i32 {
let n = nums.len();
// nums数组延长一个长度,方便转为前缀和数组(nums[i]表示数组前i项里有几个奇数)
nums.insert(0, 0);
for i in 1..=n {
nums[i] = nums[i - 1] + i32::from(nums[i] % 2 == 1);
}
let mut ret = 0;
for i in 1..=n {
// 因为k至少为1,因此j遍历到i的前一个位置即可
for j in 0..i {
// 判断子数组nums[j..=i]是否含有k个奇数
if nums[i] - nums[j] == k {
ret += 1;
}
}
}
ret
}
/// 有点贪心脑筋急转弯的思想,O(n)一次遍历
fn number_of_subarrays(nums: Vec<i32>, k: i32) -> i32 {
let n = nums.len();
// cnt有点像上面解法里的前缀和数组
let mut cnt = vec![0_u16; n + 1];
// 拥有0个奇数的子数组有1个(就是空数组)
cnt[0] = 1;
// odd类似上面解法里的nums[i-1]
let mut odd = 0_usize;
let k = k as usize;
let mut ret = 0;
for num in nums {
if num % 2 == 1 {
odd += 1;
}
if odd >= k {
ret += i32::from(cnt[odd - k]);
}
cnt[odd] += 1;
}
ret
}