-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathedit_distance.rs
210 lines (187 loc) · 7.72 KB
/
edit_distance.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
/// https://leetcode.com/problems/edit-distance
#[cfg(feature = "rustc_private")]
fn edit_distance_using_rustc_span(a: String, b: String) -> usize {
rustc_span::lev_distance::lev_distance(&a, &b)
}
/** https://leetcode.com/problems/edit-distance
- rustc_span::lev_distance::lev_distance used in rustc
- strsim::levenshtein used in rustup/darling
edit_distance 的同义词: Levenshtein distance, Damerau-Levenshtein distance
## wikipedia
- [Edit distance](https://en.wikipedia.org/wiki/Edit_distance)
- [Levenshtein distance](https://en.wikipedia.org/wiki/Levenshtein_distance)
- [Damerau-Levenshtein distance](https://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance)
---
## rustc 的实现 和 strsim库的实现
首先 rustc 为了自举也为了代码质量所以编译时尽量不要依赖第三方库,目前来看也就依赖了 libc, cc 这种 C 语言相关的库
所以 rustc 需要自己实现一个高性能的 edit_distance 算法
strsim 作为库,为了通用性把 edit_distance 的入参做成泛型
rustc 的动态规划实现的空间复杂度是 O(n),而 strsim 的动态规划实现的空间复杂度是 O(n^2)
在 leetcode 上的运行 strsim 的实现耗时 4ms,而 rustc 的实现耗时 0ms
---
## tweet: 我对 rustc 和 strsim 关于 edit_distance 的评论
https://twitter.com/ospopen/status/1380091878440271872
```text
这个算法用于typo检查和拼写错误时的候选词的建议
rust源码动态规划空间复杂度是O(n)优于strsim的O(n^2)
所以leetcode上strsim跑这题耗时4ms会慢一些
## Trie 前缀树
虽然 Trie 跟 dp 没关系,但是 Trie 跟 edit_distance 一起用能实现高性能的拼写错误检查
而且我还想实现一个基于Trie数据结构的edit_distance算法
所以我把 Trie数据结构 和 edit_distance算法放到一起
```
*/
fn lev_distance(a: &str, b: &str) -> usize {
// cases which don't require further computation
if a.is_empty() {
return b.chars().count();
} else if b.is_empty() {
return a.chars().count();
}
let mut dcol: Vec<_> = (0..=b.len()).collect();
let mut t_last = 0;
for (i, sc) in a.chars().enumerate() {
let mut current = i;
dcol[0] = current + 1;
for (j, tc) in b.chars().enumerate() {
let next = dcol[j + 1];
if sc == tc {
dcol[j + 1] = current;
} else {
dcol[j + 1] = std::cmp::min(current, next);
dcol[j + 1] = std::cmp::min(dcol[j + 1], dcol[j]) + 1;
}
current = next;
t_last = j;
}
}
dcol[t_last + 1]
}
/// edit from rustc_ast::lev_distance
fn lev_distance_optimize(word1: String, word2: String) -> i32 {
let (word1, word2) = (word1.into_bytes(), word2.into_bytes());
let (word1_len, word2_len) = (word1.len(), word2.len());
// word1_len or word2_len == 0, warning: usize mul usize overflow
if word1_len * word2_len == 0 {
return (word1_len + word2_len) as i32;
}
let mut dcol: Vec<_> = (0..=word2_len).collect();
let mut t_last = 0;
for (i, sc) in word1.into_iter().enumerate() {
let mut current = i;
dcol[0] = current + 1;
for (j, &tc) in word2.iter().enumerate() {
let next = dcol[j + 1];
if sc == tc {
dcol[j + 1] = current;
} else {
dcol[j + 1] = current.min(next);
dcol[j + 1] = dcol[j + 1].min(dcol[j]) + 1;
}
current = next;
t_last = j;
}
}
dcol[t_last + 1] as i32
}
struct EditDistanceRecursive {
word1: Vec<u8>,
word2: Vec<u8>,
}
impl EditDistanceRecursive {
fn solution_entrance(word1: String, word2: String) -> i32 {
let helper = Self {
word1: word1.into_bytes(),
word2: word2.into_bytes(),
};
helper.edit_distance(helper.word1.len(), helper.word2.len()) as i32
}
/**
```python
def best_solution_tail_recursive(word1: str, word2: str) -> int:
# 如果cache用的不好,还不如禁用LRU cache,因为这算尾递归不需要memo让递归间共享变量
@lru_cache(None)
def dp(n, m):
if n == 0:
return m
if m == 0:
return n
if word1[n - 1] == word2[m - 1]:
return dp(n - 1, m - 1)
# 为何看上去没有memo也能这么快?同理用栈模拟尾递归也是最快的解法
return min(
dp(n, m - 1), # insert
dp(n - 1, m), # remove
dp(n - 1, m - 1) # replace
) + 1
return dp(len(word1), len(word2))
```
思路,两个指针分别从后往前扫两个字符串
*/
fn edit_distance(&self, index1: usize, index2: usize) -> usize {
// 如果从后往前扫其中一个指针遍历完了,则剩余的编辑距离就是另一个指针未遍历的剩余长度
if index1 == 0 {
return index2;
}
if index2 == 0 {
return index1;
}
// NOTE 注意为了避免0_usize-1越界,所以index1会从 word_len1..1
// 所以当前遍历的下标应该分别是 index1-1 和 index2-1
if self.word1[index1 - 1] == self.word2[index2 - 1] {
return self.edit_distance(index1 - 1, index2 - 1);
}
self.edit_distance(index1, index2 - 1) // insert: word2[..=index2-2] push word1[index1-1] to make word1[..=index1-1] same as word2[..=index2-1]
.min(self.edit_distance(index1 - 1, index2)) // delete: word2[..=index2-2] delete last char
.min(self.edit_distance(index1 - 1, index2 - 1)) // replace
+ 1
}
}
/// 从字符串word1修改成word2至少需要多少次操作(replace/insert/delete)
/// follow_up: 实现一个语料库是trie而不是Vec<String>的edit_distance算法
#[allow(clippy::needless_range_loop)]
fn edit_distance_dp(word1: String, word2: String) -> i32 {
let (word1, word2) = (word1.into_bytes(), word2.into_bytes());
let (word1_len, word2_len) = (word1.len(), word2.len());
// # dp[i][j]表示word1[..i]至少需要多少次操作(replace/insert/delete)替换成B[..j]
// 很容易想到的其中一种状态转移的情况: 如果word1[i]==word2[j],那么dp[i][j]==dp[i-1][j-1]
let mut dp = vec![vec![0; word2_len + 1]; word1_len + 1];
for i in 0..=word1_len {
// 需要i次删除操作才能让word1[..i]修改成空的字符串word2[..0]
dp[i][0] = i;
}
for j in 0..=word2_len {
// 需要j次插入操作才能让空字符串word1[..0]修改成word2[..j]
dp[0][j] = j;
}
for i in 1..=word1_len {
for j in 1..=word2_len {
if word1[i - 1] == word2[j - 1] {
dp[i][j] = dp[i - 1][j - 1];
} else {
// dp[i-1][j-1] + 1: word1[i-1]和word2[i-2]不同,所以替换次数+1,
// 如果dp的决策层选择replace操作,dp[i][j]总共操作数等于dp[i-1][j-1]+1
dp[i][j] = dp[i - 1][j - 1].min(dp[i - 1][j]).min(dp[i][j - 1]) + 1;
}
}
}
dp[word1_len][word2_len] as i32
}
#[test]
fn test_edit_distance() {
const TEST_CASES: [(&str, &str, i32); 2] = [("horse", "ros", 3), ("intention", "execution", 5)];
for &(word1, word2, edit_distance) in &TEST_CASES {
assert_eq!(
lev_distance_optimize(word1.to_string(), word2.to_string()),
edit_distance
);
assert_eq!(
EditDistanceRecursive::solution_entrance(word1.to_string(), word2.to_string()),
edit_distance
);
assert_eq!(
edit_distance_dp(word1.to_string(), word2.to_string()),
edit_distance
);
}
}