-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbetts_10_18_opty.py
135 lines (108 loc) · 3.25 KB
/
betts_10_18_opty.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# %%
"""
Brachistochrone
===============
This is example 10.18 from Betts' book "Practical Methods for Optimal Control
Using NonlinearProgramming", 3rd edition, Chapter 10: Test Problems.
It is described in more detail in section 4.16.2 of the book.
A classic example of the calculus of variations is to find the brachistochrone,
defined as that smooth curve joining two points A and B
(not underneath one another) along which a particle will slide from A to B
under gravity in the fastest possible time. (Of course, here already assumed
that the shape of the curve is known up to a parameter)
**States**
- :math:`x, y, v` : state variables
**Controls**
- :math:`u` : control variables
"""
import numpy as np
import sympy as sm
import sympy.physics.mechanics as me
from opty.direct_collocation import Problem
import matplotlib.pyplot as plt
import time
# %%
# Equations of motion.
# --------------------
start = time.time()
t = me.dynamicsymbols._t
x, y, v = me.dynamicsymbols('x y v')
u = me.dynamicsymbols('u')
h_fast = sm.symbols('h_fast')
eom = sm.Matrix([
-x.diff() + v*sm.cos(u),
-y.diff() + v*sm.sin(u),
-v.diff() + 32.17405 * sm.sin(u),
])
sm.pprint(eom)
# %%
# Define and solve the optimization problem.
num_nodes = 1001
iterations = 2000
interval_value = h_fast
t0, tf = 0*h_fast, (num_nodes-1)*h_fast
state_symbols = (x, y, v)
unkonwn_input_trajectories = (u, )
# Specify the objective function and form the gradient.
# Her the duration is to be minimized
def obj(free):
return free[-1]
def obj_grad(free):
grad = np.zeros_like(free)
grad[-1] = 1.0
return grad
instance_constraints = (
x.func(t0),
y.func(t0),
v.func(t0),
x.func(tf) - 1.0,
)
bounds = {
h_fast: (0.0, 1.0/(num_nodes-1)),
x: (0.0, 10.0),
y: (0.0, 10.0),
v: (0.0, 10.0),
u: (0, np.pi/2),
}
prob = Problem(
obj,
obj_grad,
eom,
state_symbols,
num_nodes,
interval_value,
instance_constraints= instance_constraints,
bounds=bounds,
)
# %%
# Solve the optimization problem.
# Give some rough estimates for the trajectories.
initial_guess = np.ones(prob.num_free)
# Find the optimal solution.
for i in range(1):
solution, info = prob.solve(initial_guess)
initial_guess = solution
print(info['status_msg'])
print(f'Duration is: {solution[-1]*(num_nodes-1):.6f}, ' +
f'as per the book it is {0.312480130}, so the deviation is: ' +
f'{(solution[-1]*(num_nodes-1) - 0.312480130)/0.312480130*100 :.3e} %')
# print(f'p(tf) = {solution[num_nodes-1]:.4f}' +
# f'as per the book it is {7571.6712}, so the deviation is: ' +
# f'{(solution[num_nodes-1] - 7571.6712)/7571.6712*100 :.3e} %')
# %%
# Plot the optimal state and input trajectories.
prob.plot_trajectories(solution)
# %%
# Plot the constraint violations.
prob.plot_constraint_violations(solution)
# %%
# Plot the objective function as a function of optimizer iteration.
prob.plot_objective_value()
# %%
fig, ax = plt.subplots(1, 1, figsize=(10, 5))
ax.set_title('Brachistochrone')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_aspect('equal')
ax.plot(solution[0: num_nodes], -solution[num_nodes: 2*num_nodes])
print(f'Time taken: {time.time() - start:.2f} seconds')