forked from AntonotnaWang/NaviAirway
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSegmentAirways.py
91 lines (78 loc) · 3.49 KB
/
SegmentAirways.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Oct 5 17:43:45 2022
@author: 4o4notfound
"""
import numpy as np
import torch
import SimpleITK as sitk
import os
from lungmask import mask as LMInferer
from func.model_arch import SegAirwayModel
from func.model_run import semantic_segment_crop_and_cat
from func.post_process import post_process
from func.ulti import load_one_CT_img
def getdirs(path_to_folder):
return [f.name for f in os.scandir(path_to_folder) if f.is_dir()]
def bbox2_3D(mask):
# Computes a bounding box for the mask
r = np.any(mask, axis=(1, 2))
c = np.any(mask, axis=(0, 2))
z = np.any(mask, axis=(0, 1))
rmin, rmax = np.where(r)[0][[0, -1]]
cmin, cmax = np.where(c)[0][[0, -1]]
zmin, zmax = np.where(z)[0][[0, -1]]
return rmin, rmax, cmin, cmax, zmin, zmax
def segmentAirway(raw_img_path, lung_path, savepath):
in_img = load_one_CT_img(raw_img_path)
if os.path.isfile(lung_path) == False:
inferer = LMInferer()
raw_img = sitk.ReadImage(raw_img_path)
segmentation = inferer.apply(raw_img)
segmentation = np.uint8(segmentation>0)
lungmask = sitk.GetImageFromArray(segmentation)
lungmask.CopyInformation(raw_img)
sitk.WriteImage(lungmask, lung_path)
lmg = load_one_CT_img(lung_path)
rmin, rmax, cmin, cmax, zmin, zmax = bbox2_3D(lmg)
raw_img = in_img[rmin:rmax, cmin:cmax, zmin:zmax]
seg_result_semi_supervise_learning = semantic_segment_crop_and_cat(raw_img, model_semi_supervise_learning, device,
crop_cube_size=[32, 128, 128], stride=[16, 64, 64],
windowMin=-1000, windowMax=600)
seg_onehot_semi_supervise_learning = np.array(seg_result_semi_supervise_learning>threshold, dtype=np.uint8)
#
seg_result = semantic_segment_crop_and_cat(raw_img, model, device,
crop_cube_size=[32, 128, 128], stride=[16, 64, 64],
windowMin=-1000, windowMax=600)
seg_onehot = np.array(seg_result>threshold, dtype=np.uint8)
#
seg_onehot_comb = np.array((seg_onehot+seg_onehot_semi_supervise_learning)>0, dtype=np.uint8)
seg_processed,_ = post_process(seg_onehot_comb, threshold=threshold)
#
op = np.zeros_like(lmg)
op[rmin:rmax, cmin:cmax, zmin:zmax] = seg_processed
zz = sitk.GetImageFromArray(np.uint8(op>0))
zz.CopyInformation(sitkim)
sitk.WriteImage(zz, savepath)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
threshold = 0.5
model=SegAirwayModel(in_channels=1, out_channels=2)
model.to(device)
load_path = "checkpoint/checkpoint.pkl"
checkpoint = torch.load(load_path)
model.load_state_dict(checkpoint['model_state_dict'])
model_semi_supervise_learning=SegAirwayModel(in_channels=1, out_channels=2)
model_semi_supervise_learning.to(device)
load_path = "checkpoint/checkpoint_semi_supervise_learning.pkl"
checkpoint = torch.load(load_path)
model_semi_supervise_learning.load_state_dict(checkpoint['model_state_dict'])
path_to_folder = '<path_to_patient_folder_containing CT, LungMask, etc.>'
CT_filename = 'CT.nii.gz'
LungMask_filename = 'LungMask.nii.gz'
Output_filename = 'Airway.nii.gz'
CT_path = os.path.join(path_to_folder, CT_filename)
Lung_path = os.path.join(path_to_folder, LungMask_filename)
Output_path = os.path.join(path_to_folder, Output_filename)
print("Segmenting Airways...")
segmentAirway(CT_path, Lung_path, Output_path)