-
Notifications
You must be signed in to change notification settings - Fork 72
/
Copy patheval.py
192 lines (162 loc) · 7.06 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
from classifier_inception_resnet_v2 import *
from classifier_inception_v3 import *
from classifier_xception import *
from classifier_resnet import *
from classifier_vgg16 import *
from classifier_vgg19 import *
from predictor import *
from config import *
import numpy as np
import im_utils
import utils
import json
import time
import sys
import os
# noinspection PyTypeChecker
def dump_json(predictor, target_dir=PATH_VAL_IMAGES, batch_size=16):
if isinstance(predictor, IntegratedPredictor):
n_predictors = len(predictor.index2combine_name)
path_json_dumps = [CONTEXT(predictor.index2combine_name[i], policy=predictor.index2policy[i])['path_json_dump']
for i in range(n_predictors)]
else:
path_json_dumps = [CONTEXT(predictor.name)['path_json_dump']]
results, return_array = eval_predictor(predictor, target_dir, batch_size, dump_json_handler)
assert len(results) == len(path_json_dumps), 'The result length is not equal with path_json_dumps\'s.'
for result, save_path in zip(results, path_json_dumps):
dir = os.path.dirname(save_path)
if not os.path.exists(dir):
os.makedirs(dir)
with open(save_path, 'w') as f:
json.dump(result, f)
print('Dump %s finished.' % save_path)
return path_json_dumps if return_array else path_json_dumps[0]
def dump_json_handler(image_id, label_id):
return {'image_id': image_id, 'label_id': label_id}
def default_handler(image_id, label_id):
return image_id, label_id
class Flag:
value = True
def eval_predictor(func_predict, target_dir=PATH_VAL_IMAGES,
batch_size=32, item_handler=default_handler):
print('Start eval predictor...')
results = []
return_array = Flag()
images = utils.get_files(target_dir)
n_images = len(images)
n_batch = n_images // batch_size
n_last_batch = n_images % batch_size
def predict_batch(start, end):
predictions = func_predict(images[start: end])
if not utils.is_multi_predictions(predictions):
predictions = [predictions]
return_array.value = False
if len(results) == 0:
for i in range(len(predictions)):
results.append([])
else:
assert len(results) == len(predictions), 'The predictions length is not equal with last time\'s.'
image_ids = [os.path.basename(image) for image in images[start: end]]
for index, prediction in enumerate(predictions):
results[index].extend([item_handler(image_ids[i], prediction[i]) for i in range(end - start)])
sys.stdout.write('\rProcessing %d/%d' % (end, n_images))
sys.stdout.flush()
for batch in range(n_batch):
index = batch * batch_size
predict_batch(index, index + batch_size)
if n_last_batch:
index = n_batch * batch_size
predict_batch(index, index + n_last_batch)
sys.stdout.write('\n')
return results if return_array.value else results[0], return_array.value
def __load_data(submit_file, reference_file, result):
# load submit result and reference result
with open(submit_file, 'r') as file1:
submit_data = json.load(file1)
with open(reference_file, 'r') as file1:
ref_data = json.load(file1)
if len(submit_data) != len(ref_data):
result['warning'].append('Inconsistent number of images between submission and reference data \n')
submit_dict = {}
ref_dict = {}
for item in submit_data:
submit_dict[item['image_id']] = item['label_id']
for item in ref_data:
ref_dict[item['image_id']] = int(item['label_id'])
return submit_dict, ref_dict
def __eval_result(submit_dict, ref_dict, result):
# eval accuracy
right_count = 0
for (key, value) in ref_dict.items():
if key not in set(submit_dict.keys()):
result['warning'].append('lacking image %s in your submission file \n' % key)
print('warnning: lacking image %s in your submission file' % key)
continue
if value in submit_dict[key][:3]:
right_count += 1
result['score'] = float(right_count) / max(len(ref_dict), 1e-5)
return result
def evaluate(eval_json, target_json):
if not os.path.exists(eval_json):
raise Exception('Submit result "%s" not found. Call dump_json to dump result first.' % PATH_JSON_DUMP)
result = {'error': [], 'warning': [], 'score': None}
SUBMIT = {}
REF = {}
try:
SUBMIT, REF = __load_data(eval_json, target_json, result)
except Exception as error:
result['error'].append(str(error))
try:
result = __eval_result(SUBMIT, REF, result)
except Exception as error:
result['error'].append(str(error))
if result['warning'] or result['error']:
print(result)
print('Score is %s.' % result['score'])
return result['score']
# PATH_TARGET = PATH_VAL_IMAGES
PATH_TARGET = PATH_TEST_B
DUMP_JSON = True
EVAL = PATH_TARGET != PATH_TEST_B
MODE = 'flip' # ['train', 'val', 'test', 'flip', None]
# POLICIES = ['A', 'B', 'C', 'D', 'E', 'P', 'M', 'MM', 'ML']
INTEGRATED_POLICY = ['D'] if PATH_TARGET == PATH_TEST_B else ['A', 'B', 'C', 'D', 'E']
if __name__ == '__main__':
START_TIME = time.time()
if DUMP_JSON:
try:
# single predictor
# predictor = KerasPredictor(InceptionRestNetV2Classifier(), MODE)
# integrated predictor
predictor = IntegratedPredictor([
# KerasPredictor(VGG19Classifier(), MODE),
# KerasPredictor(RestNetClassifier(), MODE),
KerasPredictor(XceptionClassifier(), MODE),
# KerasPredictor(InceptionV3Classifier(), MODE),
KerasPredictor(InceptionRestNetV2Classifier(), MODE),
], policies=INTEGRATED_POLICY, all_combine=PATH_TARGET != PATH_TEST_B)
path_json_dumps = dump_json(predictor, batch_size=128, target_dir=PATH_TARGET)
if not isinstance(path_json_dumps, list):
path_json_dumps = [path_json_dumps]
finally:
im_utils.recycle_pool()
else:
root_path = os.path.dirname(os.path.dirname(CONTEXT('mock')['path_json_dump']))
path_json_dumps = utils.get_files(root_path)
if EVAL:
scores = []
model_names = []
for json_path in path_json_dumps:
filename = os.path.basename(json_path)
policy = filename.replace('result_', '').replace('.json', '') if filename.__contains__('result_') else ''
combine_name = os.path.basename(os.path.dirname(json_path))
model_name = '%s%s' % (combine_name, ('_%s' % policy) if policy else '')
print('\n%s' % model_name)
scores.append(evaluate(json_path, PATH_VAL_JSON))
model_names.append(model_name)
sort_index = np.argsort(scores)[::-1]
print('\n[Sorted by scores:]')
for index in sort_index:
print('%.16f, %s' % (scores[index], model_names[index]))
time_str = utils.format_time(time.time() - START_TIME)
print('\nEvaluation time of your result: %s.' % time_str)