forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
344 lines (285 loc) · 12.6 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
## @package dataset
# Module caffe2.python.dataset
"""
Implementation of an in-memory dataset with structured schema.
Use this to store and iterate through datasets with complex schema that
fit in memory.
Iterating through entries of this dataset is very fast since the dataset
is stored as a set of native Caffe2 tensors, thus no type conversion or
deserialization is necessary.
"""
from caffe2.python import core, workspace
from caffe2.python.dataio import Reader, Writer
from caffe2.python.schema import (
Struct, from_blob_list, from_column_list, InitEmptyRecord)
import numpy as np
class _DatasetReader(Reader):
def __init__(self, dataset, name, batch_size=1, enforce_batch_size=False):
"""Don't call this directly. Instead, use dataset.reader()"""
Reader.__init__(self, dataset.content())
self.dataset = dataset
self.name = name or (dataset.name + '_cursor')
self.batch_size = batch_size
self.enforce_batch_size = enforce_batch_size
self.cursor = None
def setup_ex(self, init_net, exit_net):
if self.cursor is None:
self.cursor = init_net.CreateTreeCursor(
[],
init_net.NextScopedBlob(self.name),
fields=self.dataset.fields)
def read(self, read_net):
assert self.cursor, 'setup not called.'
content = self.dataset.content()
with core.NameScope(read_net.NextName(self.name)):
fields = read_net.ReadNextBatch(
[self.cursor] + content.field_blobs(),
content.field_names(),
batch_size=self.batch_size,
enforce_batch_size=self.enforce_batch_size)
fields = core.output_to_list(fields)
return (read_net.IsEmpty([fields[0]]), fields)
def reset(self, net):
net.ResetCursor([self.cursor], [])
class _DatasetRandomReader(Reader):
def __init__(self, dataset, name, indices, batch_size=1, loop_over=False,
enforce_batch_size=False):
"""Don't call this directly. Instead, use dataset.random_reader()"""
Reader.__init__(self, dataset.content())
self.dataset = dataset
self.cursor = None
self.name = name or (dataset.name + '_cursor')
self.indices = indices
self.batch_size = batch_size
self.loop_over = loop_over
self.enforce_batch_size = enforce_batch_size
def setup_ex(self, init_net, exit_net):
if self.cursor is None:
self.cursor = init_net.CreateTreeCursor(
[],
init_net.NextScopedBlob(self.name),
fields=self.dataset.fields)
def reset(self, net):
net.ResetCursor([self.cursor], [])
def computeoffset(self, net):
self.reset(net)
offsets = net.ComputeOffset(
[self.cursor] + self.dataset.content().field_blobs(),
'offsets')
self.offsets = offsets
def sort_and_shuffle(self, net, sort_by_field=None,
shuffle_size=1, batch_size=1):
# no sorting by default
content = self.dataset.content()
sort_by_field_idx = -1
if sort_by_field:
assert sort_by_field in content.field_names(), (
'Must be valid field.')
sort_by_field_idx = content.field_names().index(sort_by_field)
self.reset(net)
indices = net.SortAndShuffle(
[self.cursor] + content.field_blobs(),
'indices',
sort_by_field_idx=sort_by_field_idx,
shuffle_size=shuffle_size,
batch_size=batch_size)
self.indices = indices
def read(self, read_net):
assert self.cursor, 'setup_ex not called'
assert self.indices, 'sort_and_shuffle not called'
assert self.offsets, 'computeoffset not called'
content = self.dataset.content()
with core.NameScope(read_net.NextName(self.name)):
fields = read_net.ReadRandomBatch(
[self.cursor, self.indices, self.offsets] + (
content.field_blobs()),
content.field_names(),
batch_size=self.batch_size,
enforce_batch_size=self.enforce_batch_size,
loop_over=self.loop_over)
fields = core.output_to_list(fields)
return (read_net.IsEmpty([fields[0]]), fields)
class _DatasetWriter(Writer):
def __init__(self, content):
"""Don't call this directly. Use dataset.writer() instead."""
self._content = content
self.mutex = None
def setup_ex(self, init_net, exit_net):
if self.mutex is None:
self.mutex = init_net.CreateMutex([])
def write(self, writer_net, fields):
"""
Add operations to `net` that append the blobs in `fields` to the end
of the dataset. An additional operator will also be added that checks
the consistency of the data in `fields` against the dataset schema.
Args:
writer_net: The net that will contain the Append operators.
fields: A list of BlobReference to be appeneded to this dataset.
"""
assert self.mutex is not None, 'setup not called.'
field_blobs = self._content.field_blobs()
assert len(fields) == len(field_blobs), (
'Expected %s fields, got %s.' % (len(field_blobs), len(fields)))
writer_net.CheckDatasetConsistency(
fields, [], fields=self._content.field_names())
writer_net.AtomicAppend(
[self.mutex] + field_blobs + list(fields),
field_blobs)
def commit(self, finish_net):
"""Commit is a no-op for an in-memory dataset."""
pass
def Const(net, value, dtype=None, name=None):
"""
Create a 'constant' by first creating an external input in the given
net, and then feeding the corresponding blob with its provided value
in the current workspace. The name is automatically generated in order
to avoid clashes with existing blob names.
"""
assert isinstance(net, core.Net), 'net must be a core.Net instance.'
value = np.array(value, dtype=dtype)
blob = net.AddExternalInput(net.NextName(prefix=name))
workspace.FeedBlob(str(blob), value)
return blob
def execution_step_with_progress(name, init_net, substeps, rows_read):
# progress reporter
report_net = core.Net('report_net')
report_net.Print([rows_read], [])
return core.execution_step(
name,
substeps,
report_net=report_net,
concurrent_substeps=True,
report_interval=5)
class Dataset(object):
"""Represents an in-memory dataset with fixed schema.
Use this to store and iterate through datasets with complex schema that
fit in memory.
Iterating through entries of this dataset is very fast since the dataset
is stored as a set of native Caffe2 tensors, thus no type conversion or
deserialization is necessary.
"""
def __init__(self, fields, name=None):
"""Create an un-initialized dataset with schema provided by `fields`.
Before this dataset can be used, it must be initialized, either by
`init_empty` or `init_from_dataframe`.
Args:
fields: either a schema.Struct or a list of field names in a format
compatible with the one described in schema.py.
name: optional name to prepend to blobs that will store the data.
"""
assert isinstance(fields, list) or isinstance(fields, Struct), (
'fields must be either a Struct or a list of raw field names.')
if isinstance(fields, list):
fields = from_column_list(fields)
self.schema = fields
self.fields = fields.field_names()
self.field_types = fields.field_types()
self.name = name or 'dataset'
self.field_blobs = fields.field_blobs() if fields.has_blobs() else None
def trim(self, net, multiple_of):
"""
Trims the contents of this dataset so that the number of records is
multiple of the given argument.
"""
net.TrimDataset(
self.field_blobs,
self.field_blobs,
fields=self.fields,
multiple_of=multiple_of)
def init_empty(self, init_net):
"""Initialize the blobs for this dataset with empty values.
Empty arrays will be immediately fed into the current workspace,
and `init_net` will take those blobs as external inputs.
"""
self.field_blobs = InitEmptyRecord(
init_net, self.schema.clone_schema()).field_blobs()
def init_from_dataframe(self, net, dataframe):
"""Initialize the blobs for this dataset from a Pandas dataframe.
Each column of the dataframe will be immediately fed into the current
workspace, and the `net` will take this blobs as external inputs.
"""
assert len(self.fields) == len(dataframe.columns)
self.field_blobs = [
Const(net, dataframe.as_matrix([col]).flatten(), name=field)
for col, field in enumerate(self.fields)]
def get_blobs(self):
"""
Return the list of BlobReference pointing to the blobs that contain
the data for this dataset.
"""
assert self
return self.field_blobs
def content(self):
"""
Return a Record of BlobReferences pointing to the full content of
this dataset.
"""
return from_blob_list(self.schema, self.field_blobs)
def field_names(self):
"""Return the list of field names for this dataset."""
return self.fields
def field_types(self):
"""
Return the list of field dtypes for this dataset.
If a list of strings, not a schema.Struct, was passed to the
constructor, this will return a list of dtype(np.void).
"""
return self.field_types
def reader(self, init_net=None, cursor_name=None, batch_size=1,
enforce_batch_size=False):
"""Create a Reader object that is used to iterate through the dataset.
This will append operations to `init_net` that create a TreeCursor,
used to iterate through the data.
NOTE: Currently, it is not safe to append to a dataset while reading.
Args:
init_net: net that will be run once to create the cursor.
cursor_name: optional name for the blob containing a pointer
to the cursor.
batch_size: how many samples to read per iteration.
Returns:
A _DatasetReader that can be used to create operators that will
iterate through the dataset.
"""
assert self.field_blobs, 'Dataset not initialized.'
reader = _DatasetReader(self, cursor_name, batch_size,
enforce_batch_size)
if init_net is not None:
reader.setup_ex(init_net, None)
return reader
def random_reader(self, init_net=None, indices=None, cursor_name=None,
batch_size=1, loop_over=False, enforce_batch_size=False):
"""Create a Reader object that is used to iterate through the dataset.
NOTE: The reader order depends on the order in indices.
Args:
init_net: net that will be run once to create the cursor.
indices: blob of reading order
cursor_name: optional name for the blob containing a pointer
to the cursor.
batch_size: how many samples to read per iteration.
loop_over: repeat the dataset indefinitely (in the same order)
Returns:
A DatasetReader that can be used to create operators that will
iterate through the dataset according to indices.
"""
assert self.field_blobs, 'Dataset not initialized.'
reader = _DatasetRandomReader(
self, cursor_name, indices, batch_size, loop_over,
enforce_batch_size)
if init_net is not None:
reader.setup_ex(init_net, None)
return reader
def writer(self, init_net=None):
"""Create a Writer that can be used to append entries into the dataset.
NOTE: Currently, it is not safe to append to a dataset
while reading from it.
NOTE: Currently implementation of writer is not thread safe.
TODO: fixme
Args:
init_net: net that will be run once in order to create the writer.
(currently not used)
"""
assert self.field_blobs, 'Dataset not initialized.'
writer = _DatasetWriter(self.content())
if init_net is not None:
writer.setup_ex(init_net, None)
return writer