-
Notifications
You must be signed in to change notification settings - Fork 145
/
Copy pathopencv.cpp
286 lines (227 loc) · 8.43 KB
/
opencv.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
//
// opencv.cpp
// Heartbeat
//
// Created by Philipp Rouast on 3/03/2016.
// Copyright © 2016 Philipp Roüast. All rights reserved.
//
#include "opencv.hpp"
#include <limits>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
using namespace std;
namespace cv {
/* COMMON FUNCTIONS */
double getFps(Mat &t, const double timeBase) {
double result;
if (t.empty()) {
result = 1.0;
} else if (t.rows == 1) {
result = std::numeric_limits<double>::max();
} else {
double diff = (t.at<int>(t.rows-1, 0) - t.at<int>(0, 0)) * timeBase;
result = diff == 0 ? std::numeric_limits<double>::max() : t.rows/diff;
}
return result;
}
void push(Mat &m) {
const int length = m.rows;
m.rowRange(1, length).copyTo(m.rowRange(0, length - 1));
m.pop_back();
}
void plot(cv::Mat &mat) {
while (true) {
cv::imshow("plot", mat);
if (waitKey(30) >= 0) break;
}
}
/* FILTERS */
// Subtract mean and divide by standard deviation
void normalization(InputArray _a, OutputArray _b) {
_a.getMat().copyTo(_b);
Mat b = _b.getMat();
Scalar mean, stdDev;
for (int i = 0; i < b.cols; i++) {
meanStdDev(b.col(i), mean, stdDev);
b.col(i) = (b.col(i) - mean[0]) / stdDev[0];
}
}
// Eliminate jumps
void denoise(InputArray _a, InputArray _jumps, OutputArray _b) {
Mat a = _a.getMat().clone();
Mat jumps = _jumps.getMat().clone();
CV_Assert(a.type() == CV_64F && jumps.type() == CV_8U);
if (jumps.rows != a.rows) {
jumps.rowRange(jumps.rows-a.rows, jumps.rows).copyTo(jumps);
}
Mat diff;
subtract(a.rowRange(1, a.rows), a.rowRange(0, a.rows-1), diff);
for (int i = 1; i < jumps.rows; i++) {
if (jumps.at<bool>(i, 0)) {
Mat mask = Mat::zeros(a.size(), CV_8U);
mask.rowRange(i, mask.rows).setTo(ONE);
for (int j = 0; j < a.cols; j++) {
add(a.col(j), -diff.at<double>(i-1, j), a.col(j), mask.col(j));
}
}
}
a.copyTo(_b);
}
// Advanced detrending filter based on smoothness priors approach (High pass equivalent)
void detrend(InputArray _a, OutputArray _b, int lambda) {
Mat a = _a.getMat();
CV_Assert(a.type() == CV_64F);
// Number of rows
int rows = a.rows;
if (rows < 3) {
a.copyTo(_b);
} else {
// Construct I
Mat i = Mat::eye(rows, rows, a.type());
// Construct D2
Mat d = Mat(Matx<double,1,3>(1, -2, 1));
Mat d2Aux = Mat::ones(rows-2, 1, a.type()) * d;
Mat d2 = Mat::zeros(rows-2, rows, a.type());
for (int k = 0; k < 3; k++) {
d2Aux.col(k).copyTo(d2.diag(k));
}
// Calculate b = (I - (I + λ^2 * D2^t*D2)^-1) * a
Mat b = (i - (i + lambda * lambda * d2.t() * d2).inv()) * a;
b.copyTo(_b);
}
}
// Moving average filter (low pass equivalent)
void movingAverage(InputArray _a, OutputArray _b, int n, int s) {
CV_Assert(s > 0);
_a.getMat().copyTo(_b);
Mat b = _b.getMat();
for (size_t i = 0; i < n; i++) {
cv::blur(b, b, Size(s, s));
}
}
// Bandpass filter
void bandpass(cv::InputArray _a, cv::OutputArray _b, double low, double high) {
Mat a = _a.getMat();
if (a.total() < 3) {
a.copyTo(_b);
} else {
// Convert to frequency domain
Mat frequencySpectrum = Mat(a.rows, a.cols, CV_32F);
timeToFrequency(a, frequencySpectrum, false);
// Make the filter
Mat filter = frequencySpectrum.clone();
butterworth_bandpass_filter(filter, low, high, 8);
// Apply the filter
multiply(frequencySpectrum, filter, frequencySpectrum);
// Convert to time domain
frequencyToTime(frequencySpectrum, _b);
}
}
void butterworth_lowpass_filter(Mat &filter, double cutoff, int n) {
CV_DbgAssert(cutoff > 0 && n > 0 && filter.rows % 2 == 0 && filter.cols % 2 == 0);
Mat tmp = Mat(filter.rows, filter.cols, CV_32F);
//Point centre = Point(filter.rows / 2, filter.cols / 2);
double radius;
for (int i = 0; i < filter.rows; i++) {
for (int j = 0; j < filter.cols; j++) {
radius = i;
//radius = (double)sqrt(pow((i - centre.x), 2.0) + pow((double) (j - centre.y), 2.0));
tmp.at<float>(i, j) = (float)(1 / (1 + pow(radius / cutoff, 2 * n)));
}
}
Mat toMerge[] = {tmp, tmp};
merge(toMerge, 2, filter);
}
void butterworth_bandpass_filter(Mat &filter, double cutin, double cutoff, int n) {
CV_DbgAssert(cutoff > 0 && cutin < cutoff && n > 0 &&
filter.rows % 2 == 0 && filter.cols % 2 == 0);
Mat off = filter.clone();
butterworth_lowpass_filter(off, cutoff, n);
Mat in = filter.clone();
butterworth_lowpass_filter(in, cutin, n);
filter = off - in;
}
void timeToFrequency(InputArray _a, OutputArray _b, bool magnitude) {
// Prepare planes
Mat a = _a.getMat();
Mat planes[] = {cv::Mat_<float>(a), cv::Mat::zeros(a.size(), CV_32F)};
Mat powerSpectrum;
merge(planes, 2, powerSpectrum);
// Fourier transform
dft(powerSpectrum, powerSpectrum, DFT_COMPLEX_OUTPUT);
if (magnitude) {
split(powerSpectrum, planes);
cv::magnitude(planes[0], planes[1], planes[0]);
planes[0].copyTo(_b);
} else {
powerSpectrum.copyTo(_b);
}
}
void frequencyToTime(InputArray _a, OutputArray _b) {
Mat a = _a.getMat();
// Inverse fourier transform
idft(a, a);
// Split into planes; plane 0 is output
Mat outputPlanes[2];
split(a, outputPlanes);
Mat output = Mat(a.rows, 1, a.type());
normalize(outputPlanes[0], output, 0, 1, NORM_MINMAX);
output.copyTo(_b);
}
void pcaComponent(cv::InputArray _a, cv::OutputArray _b, cv::OutputArray _pc, int low, int high) {
Mat a = _a.getMat();
CV_Assert(a.type() == CV_64F);
// Perform PCA
cv::PCA pca(a, cv::Mat(), PCA::DATA_AS_ROW);
// Calculate PCA components
cv::Mat pc = a * pca.eigenvectors.t();
// Band mask
const int total = a.rows;
Mat bandMask = Mat::zeros(a.rows, 1, CV_8U);
bandMask.rowRange(min(low, total), min(high, total) + 1).setTo(ONE);
// Identify most distinct
std::vector<double> vals;
for (int i = 0; i < pc.cols; i++) {
cv::Mat magnitude = Mat(pc.rows, 1, CV_32F);
// Calculate spectral magnitudes
cv::timeToFrequency(pc.col(i), magnitude, true);
// Normalize
//printMat<float>("magnitude1", magnitude);
cv::normalize(magnitude, magnitude, 1, 0, NORM_L1, -1, bandMask);
//printMat<float>("magnitude2", magnitude);
// Grab index of max
double min, max;
Point pmin, pmax;
cv::minMaxLoc(magnitude, &min, &max, &pmin, &pmax, bandMask);
vals.push_back(max);
}
// Select most distinct
int idx[2];
cv::minMaxIdx(vals, 0, 0, 0, &idx[0]);
if (idx[0] == -1) {
pc.col(1).copyTo(_b);
} else {
//pc.col(1).copyTo(_b);
pc.col(idx[1]).copyTo(_b);
}
pc.copyTo(_pc);
}
/* LOGGING */
void printMagnitude(String title, Mat &powerSpectrum) {
Mat planes[2];
split(powerSpectrum, planes);
magnitude(planes[0], planes[1], planes[0]);
Mat mag = (planes[0]).clone();
mag += Scalar::all(1);
log(mag, mag);
printMat<double>(title, mag);
}
void printMatInfo(const std::string &name, InputArray _a) {
Mat a = _a.getMat();
std::cout << name << ": " << a.rows << "x" << a.cols
<< " channels=" << a.channels()
<< " depth=" << a.depth()
<< " isContinuous=" << (a.isContinuous() ? "true" : "false")
<< " isSubmatrix=" << (a.isSubmatrix() ? "true" : "false") << std::endl;
}
}