diff --git a/README.md b/README.md index a2e2793..73bfbb2 100644 --- a/README.md +++ b/README.md @@ -62,7 +62,8 @@ univariate as well as *multivariate* inputs. 2. **Image Classification**: A Deep Generalized Convolutional Sum-Product Network (DGC-SPN). [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/pronobis/libspn-keras/blob/master/examples/notebooks/DGC-SPN%20Image%20Classification.ipynb) 3. **Image Completion**: A Deep Generalized Convolutional Sum-Product Network (DGC-SPN). [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/pronobis/libspn-keras/blob/master/examples/notebooks/DGC-SPN%20Image%20Completion.ipynb) 4. **Understanding region SPNs** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/pronobis/libspn-keras/blob/master/examples/notebooks/Understanding%20Region%20SPNs.ipynb) -5. More to come, and if you would like to see a tutorial on anything in particular +5. **Samping with convolutional SPNs** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/pronobis/libspn-keras/blob/master/examples/notebooks/Sampling%20with%20conv%20SPNs.ipynb) +6. More to come, and if you would like to see a tutorial on anything in particular please raise an issue! Check out the way we can build complex DGC-SPNs in a layer-wise fashion: diff --git a/examples/notebooks/Sampling with conv SPNs.ipynb b/examples/notebooks/Sampling with conv SPNs.ipynb new file mode 100644 index 0000000..8b7eb19 --- /dev/null +++ b/examples/notebooks/Sampling with conv SPNs.ipynb @@ -0,0 +1,528 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "accelerator": "GPU", + "colab": { + "name": "Sampling with conv SPNs.ipynb", + "provenance": [], + "collapsed_sections": [], + "toc_visible": true + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.1" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "cw8l-b_NIaBy" + }, + "source": [ + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/pronobis/libspn-keras/blob/master/examples/notebooks/Sampling%20with%20conv%20SPNs.ipynb)\n", + "\n", + "# **Image Sampling**: Sampling MNIST images\n", + "In this notebook, we'll set up an SPN to generate new MNIST images by sampling from an SPN.\n", + "\n", + "First let's set up the dependencies:" + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "zpHo0-cLPIyD", + "outputId": "cfc0651e-bfa7-4c7a-f2f1-976d5120b304" + }, + "source": [ + "!pip install libspn_keras" + ], + "execution_count": 38, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Processing ./libspn_keras-0.5.2-py3-none-any.whl\n", + "Installing collected packages: libspn-keras\n", + "Successfully installed libspn-keras-0.5.2\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hM7gCCcdfJ3U" + }, + "source": [ + "## Convolutional SPN\n", + "A convolutional SPN consists of convolutional product and convolutional sum nodes. For the sake of \n", + "demonstration, we'll use a structure that trains relatively quickly, without worrying too much about the final performance of the model. " + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "333_El0hJo8J" + }, + "source": [ + "import libspn_keras as spnk" + ], + "execution_count": 1, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "J0uKj7puJo8J" + }, + "source": [ + "### Setting the Default Sum Accumulator Initializer\n", + "\n", + "In `libspn-keras`, we refer to the unnormalized weights as _accumulators_. These can be represented in linear space or logspace. Setting the ``SumOp`` also configures the default choice of representation space for these accumulators. For example, gradients should be used in the case of _discriminative_ learning and accumulators are then preferrably represented in logspace. This overcomes the need to project the accumulators to $\\mathbb R^+$ after gradient updates, since for log accumulators can take any value in $\\mathbb R$ (whereas linear accumulators are limited to $\\mathbb R^+$).\n", + "\n", + "In this case however, we'll do generative learning so we can set our `SumOp` to `SumOpEMBackprop`.\n", + "\n", + "To set the default initial value (which will be transformed to logspace internally if needed), one can use `spnk.set_default_accumulator_initializer`:" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "GH_3p88eJo8K" + }, + "source": [ + "from tensorflow import keras\n", + "\n", + "spnk.set_default_accumulator_initializer(\n", + " spnk.initializers.Dirichlet()\n", + ")" + ], + "execution_count": 2, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "DWvCACQ50ROK" + }, + "source": [ + "import numpy as np\n", + "import tensorflow_datasets as tfds\n", + "from libspn_keras.layers import NormalizeAxes\n", + "import tensorflow as tf\n", + "\n", + "def take_first(a, b):\n", + " return tf.reshape(tf.cast(a, tf.float32), (-1, 28, 28, 1))\n", + "\n", + "normalize = spnk.layers.NormalizeStandardScore(\n", + " input_shape=(28, 28, 1), axes=NormalizeAxes.GLOBAL\n", + ")\n", + "\n", + "mnist_images = tfds.load(name=\"mnist\", batch_size=32, split=\"train\", as_supervised=True).map(take_first)\n", + "normalize.adapt(mnist_images) \n", + "mnist_normalized = np.concatenate(list(mnist_images.map(normalize).as_numpy_iterator()))\n", + "location_initializer = spnk.initializers.PoonDomingosMeanOfQuantileSplit(\n", + " mnist_normalized\n", + ")\n" + ], + "execution_count": 3, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "FZBUn_xYJo8K" + }, + "source": [ + "### Defining the Architecture\n", + "We'll go for a relatively simple convolutional SPN architecture. We use solely non-overlapping patches. After 5 convolutions, the nodes' scopes cover all variables. We then add a layer with 10 mixtures, one for each class. We can do this to optimize the joint probability of $P(X,Y)$ instead of just $P(X)$." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "3G4lXlqg0_0r" + }, + "source": [ + "\n", + "def build_spn(sum_op, return_logits, infer_no_evidence=False):\n", + " spnk.set_default_sum_op(sum_op)\n", + " return spnk.models.SequentialSumProductNetwork([\n", + " normalize,\n", + " spnk.layers.NormalLeaf(\n", + " num_components=4, \n", + " location_trainable=True,\n", + " location_initializer=location_initializer,\n", + " scale_trainable=True\n", + " ),\n", + " spnk.layers.Conv2DProduct(\n", + " depthwise=False, \n", + " strides=[2, 2], \n", + " dilations=[1, 1], \n", + " kernel_size=[2, 2],\n", + " padding='valid'\n", + " ),\n", + " spnk.layers.Local2DSum(num_sums=32),\n", + " spnk.layers.Conv2DProduct(\n", + " depthwise=True, \n", + " strides=[2, 2], \n", + " dilations=[1, 1], \n", + " kernel_size=[2, 2],\n", + " padding='valid'\n", + " ),\n", + " spnk.layers.Local2DSum(num_sums=64),\n", + " # Pad to go from 7x7 to 8x8, so that we can apply 3 more Conv2DProducts\n", + " tf.keras.layers.ZeroPadding2D(((0, 1), (0, 1))),\n", + " spnk.layers.Conv2DProduct(\n", + " depthwise=True, \n", + " strides=[2, 2], \n", + " dilations=[1, 1], \n", + " kernel_size=[2, 2],\n", + " padding='valid'\n", + " ),\n", + " spnk.layers.Local2DSum(num_sums=128),\n", + " spnk.layers.Conv2DProduct(\n", + " depthwise=True, \n", + " strides=[2, 2], \n", + " dilations=[1, 1], \n", + " kernel_size=[2, 2],\n", + " padding='valid'\n", + " ),\n", + " spnk.layers.Local2DSum(num_sums=256),\n", + " spnk.layers.Conv2DProduct(\n", + " depthwise=True, \n", + " strides=[2, 2], \n", + " dilations=[1, 1], \n", + " kernel_size=[2, 2],\n", + " padding='valid'\n", + " ),\n", + " spnk.layers.SpatialToRegions(),\n", + " spnk.layers.LogDropout(rate=0.5),\n", + " spnk.layers.DenseSum(num_sums=10),\n", + " spnk.layers.RootSum(return_weighted_child_logits=return_logits)\n", + " ], infer_no_evidence=infer_no_evidence, unsupervised=False)\n", + " " + ], + "execution_count": 39, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "jupyter": { + "outputs_hidden": false + }, + "pycharm": { + "name": "#%%\n" + }, + "id": "EEr_IcoLJo8K", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "7f4b5cd9-3cfb-462c-8d54-3be77ad93c32" + }, + "source": [ + "sum_product_network = build_spn(spnk.SumOpEMBackprop(), return_logits=True)\n", + "sum_product_network.summary()" + ], + "execution_count": 40, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Model: \"sequential_sum_product_network_8\"\n", + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "normalize_standard_score (No (None, 28, 28, 1) 2 \n", + "_________________________________________________________________\n", + "normal_leaf_8 (NormalLeaf) (None, 28, 28, 4) 6272 \n", + "_________________________________________________________________\n", + "conv2d_product_42 (Conv2DPro (None, 14, 14, 256) 4096 \n", + "_________________________________________________________________\n", + "local2d_sum_30 (Local2DSum) (None, 14, 14, 32) 1605632 \n", + "_________________________________________________________________\n", + "conv2d_product_43 (Conv2DPro (None, 7, 7, 32) 4 \n", + "_________________________________________________________________\n", + "local2d_sum_31 (Local2DSum) (None, 7, 7, 64) 100352 \n", + "_________________________________________________________________\n", + "zero_padding2d_6 (ZeroPaddin (None, 8, 8, 64) 0 \n", + "_________________________________________________________________\n", + "conv2d_product_44 (Conv2DPro (None, 4, 4, 64) 4 \n", + "_________________________________________________________________\n", + "local2d_sum_32 (Local2DSum) (None, 4, 4, 128) 131072 \n", + "_________________________________________________________________\n", + "conv2d_product_45 (Conv2DPro (None, 2, 2, 128) 4 \n", + "_________________________________________________________________\n", + "local2d_sum_33 (Local2DSum) (None, 2, 2, 256) 131072 \n", + "_________________________________________________________________\n", + "conv2d_product_46 (Conv2DPro (None, 1, 1, 256) 4 \n", + "_________________________________________________________________\n", + "spatial_to_regions_8 (Spatia (None, 1, 1, 256) 0 \n", + "_________________________________________________________________\n", + "log_dropout_9 (LogDropout) (None, 1, 1, 256) 0 \n", + "_________________________________________________________________\n", + "dense_sum_8 (DenseSum) (None, 1, 1, 10) 2560 \n", + "_________________________________________________________________\n", + "root_sum_8 (RootSum) (None, 10) 10 \n", + "=================================================================\n", + "Total params: 1,981,084\n", + "Trainable params: 1,976,970\n", + "Non-trainable params: 4,114\n", + "_________________________________________________________________\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "LXN945AmcvNh", + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "### Setting up a `tf.Dataset` with `tensorflow_datasets`\n", + "Then, we'll configure a train set and a test set using `tensorflow_datasets`." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "wjmtjHUvct-q", + "pycharm": { + "name": "#%%\n" + } + }, + "source": [ + "import tensorflow_datasets as tfds\n", + "\n", + "batch_size = 128\n", + "\n", + "mnist_train = (\n", + " tfds.load(name=\"mnist\", split=\"train\", as_supervised=True)\n", + " .shuffle(1024)\n", + " .batch(batch_size)\n", + ")\n", + "\n", + "mnist_test = (\n", + " tfds.load(name=\"mnist\", split=\"test\", as_supervised=True)\n", + " .batch(100)\n", + ")" + ], + "execution_count": 41, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "pLlgidYGJo8M" + }, + "source": [ + "### Configuring the remaining training components\n", + "Note that our SPN spits out the joint probabities for each $y\\in\\{Y_i\\}_{i=1}^{10}$, so there are 10 outputs per sample. We can optimize the probability of $P(X,Y)$ by using `spnk.metrics.NegativeLogJoint` as the loss." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "8b20-VDbxbr7" + }, + "source": [ + "optimizer = spnk.optimizers.OnlineExpectationMaximization(learning_rate=0.05, accumulate_batches=1)\n", + "metrics = []\n", + "loss = spnk.losses.NegativeLogJoint()\n", + "\n", + "sum_product_network.compile(loss=loss, metrics=metrics, optimizer=optimizer)" + ], + "execution_count": 44, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "h3cQ2B8NdvK7" + }, + "source": [ + "### Training the SPN\n", + "We can simply use the `.fit` function that comes with Keras and pass our `tf.data.Dataset` to it to train!" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "ntIS2OEbdnku", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "34eb2ce8-7496-41fe-b3a4-30fb29317828" + }, + "source": [ + "import tensorflow as tf \n", + "\n", + "sum_product_network.fit(mnist_train, epochs=20, callbacks=[tf.keras.callbacks.ReduceLROnPlateau(monitor=\"loss\", min_delta=0.1, patience=2, factor=0.5)])\n", + "sum_product_network.evaluate(mnist_test)" + ], + "execution_count": 45, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Epoch 1/20\n", + "469/469 [==============================] - 5s 7ms/step - loss: 402.2145\n", + "Epoch 2/20\n", + "469/469 [==============================] - 3s 7ms/step - loss: 402.2913\n", + "Epoch 3/20\n", + "469/469 [==============================] - 3s 7ms/step - loss: 402.2564\n", + "Epoch 4/20\n", + "469/469 [==============================] - 3s 7ms/step - loss: 401.9757\n", + "Epoch 5/20\n", + "469/469 [==============================] - 4s 7ms/step - loss: 401.7938\n", + "Epoch 6/20\n", + "469/469 [==============================] - 4s 7ms/step - loss: 401.7602\n", + "Epoch 7/20\n", + "469/469 [==============================] - 4s 7ms/step - loss: 401.9316\n", + "Epoch 8/20\n", + "469/469 [==============================] - 4s 8ms/step - loss: 401.8474\n", + "Epoch 9/20\n", + "469/469 [==============================] - 4s 7ms/step - loss: 401.7027\n", + "Epoch 10/20\n", + "469/469 [==============================] - 4s 8ms/step - loss: 401.6992\n", + "Epoch 11/20\n", + "469/469 [==============================] - 4s 7ms/step - loss: 401.5543\n", + "Epoch 12/20\n", + "469/469 [==============================] - 3s 7ms/step - loss: 401.7660\n", + "Epoch 13/20\n", + "469/469 [==============================] - 4s 8ms/step - loss: 401.4753\n", + "Epoch 14/20\n", + "469/469 [==============================] - 4s 7ms/step - loss: 401.4407\n", + "Epoch 15/20\n", + "469/469 [==============================] - 3s 7ms/step - loss: 401.3692\n", + "Epoch 16/20\n", + "469/469 [==============================] - 4s 7ms/step - loss: 401.4362\n", + "Epoch 17/20\n", + "469/469 [==============================] - 3s 7ms/step - loss: 401.4453\n", + "Epoch 18/20\n", + "469/469 [==============================] - 4s 8ms/step - loss: 401.4886\n", + "Epoch 19/20\n", + "469/469 [==============================] - 4s 8ms/step - loss: 401.3777\n", + "Epoch 20/20\n", + "469/469 [==============================] - 4s 8ms/step - loss: 401.4609\n", + "100/100 [==============================] - 1s 4ms/step - loss: 403.4022\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "403.4021911621094" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 45 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "DzfZGyELoB-S" + }, + "source": [ + "## Building an SPN to sample\n", + "For sampling, we require our sum nodes to backpropagate discrete signals that correspond to the sampled paths. Each path originates at the root and eventually ends up at the leaves.\n", + "\n", + "We build using the same function as before and copy the weights from the already trained SPN." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "xxda_6yF0tGP" + }, + "source": [ + "sum_product_network_sample = build_spn(spnk.SumOpSampleBackprop(), return_logits=False, infer_no_evidence=True)\n", + "sum_product_network_sample.set_weights(sum_product_network.get_weights())" + ], + "execution_count": 47, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ZRzu5q8apAuL" + }, + "source": [ + "## Drawing samples\n", + "Sampling from SPNs comes down to determining values for variables that are outside of the evidence. When images are sampled as a whole, all variables are omitted from the evidence. For this special case of inference, the `SequentialSumProductNetwork` class defines a `zero_evidence_inference` method that takes a size parameter. Below, we sample 64 images and voilá!" + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 486 + }, + "id": "dHuwVIsD4WQX", + "outputId": "3b3e644a-6566-4e3f-be73-c80bbd4d3e71" + }, + "source": [ + "import matplotlib.pyplot as plt\n", + "from mpl_toolkits.axes_grid1 import ImageGrid\n", + "\n", + "fig = plt.figure(figsize=(8., 8.))\n", + "grid = ImageGrid(\n", + " fig, 111,\n", + " nrows_ncols=(8, 8),\n", + " axes_pad=0.1,\n", + ")\n", + "\n", + "sample = sum_product_network_sample.zero_evidence_inference(64)\n", + "for ax, im in zip(grid, sample):\n", + " ax.imshow(np.squeeze(im), cmap=\"gray\")\n", + "plt.show()" + ], + "execution_count": 49, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdYAAAHVCAYAAABMjtr0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9eXQc1ZU//qnq6n1Vq7VLtixjyZZlbGFiAgEmhIAdbxDMEhhjyHGAJPMNk5zACcQTEkLiLBMmhAFnyDmZTEhY8iNAYmMCOIDBDgRvGBtbeAEv8qKlJfW+d9fvD3GfX5WqJdlSLzJ9z+nTrVZX9/vU3e+77z1BlmWUqEQlKlGJSlSi8SGx0AMoUYlKVKISlehsopJjLVGJSlSiEpVoHKnkWEtUohKVqEQlGkcqOdYSlahEJSpRicaRSo61RCUqUYlKVKJxpJJjLVGJSlSiEpVoHGlMjlUQhAWCIOwTBOGgIAj3jNegSlSiEpWoRCWaqCSc6TpWQRB0APYDuALAMQBbAdwoy/Le8RteiUpUohKVqEQTi8aSsc4DcFCW5Y9kWU4AeBrAVeMzrBKVqEQlKlGJJiZJY7i2DkAn9/cxABcMd4EgCBN+mydZlgWt90vYipuyYQPObnwlbMVNn0RswNmPbyyOdVQkCMLtAG7P9e8UgkrYJi6dzfhK2CYmnc3YgLMfH09jmWO9EMAPZFme//Hf9wKALMs/GeaaszZKKWErbvqkRs8lbMVNn0RswNmPbywZ61YA0wRBmALgOIAvAbhpDN83biQISrxn00EDExkbP3atcU9kbKOhsxkfYVPz+GzA+EngG9HZhA0oHL4zdqyyLKcEQfh/AF4GoAPwv7Is7xm3kY1A6huW7T3+ffVNLVYhOhuxTZ06FVOmTIFOp0MikcA///lPxGIxAEOxCYIAWZYnDDaezkbeEY2EzWKx4LLLLoPJZIIsy9i7dy86OjoUn5+o2LTeP1v4Rn+XdG78aExzrLIsvwjgxXEay6iIv2GjeQ2cumkkPPQe/3e+yWg0QhRFxGIxxfiIJjI2Go/ZbIYgCBAEAR6PBw0NDdDr9YjFYti/fz+i0Sj7Py/wgUAAmUymaLFp0dnEOzWNFpter0dTUxNsNhsymQy6urogiuJZgY2n0+GbIAgwGo3IZDJIJBLjPv7hiB+3KIqw2+0QRfGs1Lliw5fz5qWxkpaA8zduuAcweNPohmZ70OfyJTiCIGDu3Lmw2+148803EYvFzhpsRGazGZdffjlsNhuMRiPMZjOsVivMZjN0Oh2ampqg0+lgNpshSRJ0Oh1EUYTf78ejjz4Kn89XtNiAs1Mux4rNarViypQpcDgcyGQy+OCDDyBJ0lmB7Uz5ZjQa8ZnPfAZ+vx/bt2/PKd7hsDkcDnz5y1+Gy+U6K3WOx2cymaDX66HT6QAAgUAAa9asySu+onas/M2jZ3pNkYn6WRAE6HQ6GAwGtLa2IhKJ4IMPPkAmk2EPXjkymcyQ382l0NjtdjidTpSVlcFsNivGXVFRAY/HA4PBAFEUmfDr9XqGiz5P40yn00in00ilUkilUojFYjhw4AASiUTesRERP5xOJ+x2OywWCwwGA4xGI3vNP+v1ekjSoCj6fD6mGDyPCs03NT7183ByWV9fj/r6eoiiiGQyib179yIejxclPkEQIEkSamtrGV9EUYQoijAYDEin0zh06BBSqdQQnTMajXC73XA6nUin07BarZAkqaiwqZ9Ha08oo6HxV1dXo7Kykumd+pHJZJBKpaDX62G32xGPxwuCTRAENDU1obq6GpMmTYLT6Ryic5FIBJ/+9KcRDAaH2BN6BINBHDlyZAifCqlzvL202+1oaGhQ4NPr9QCAgYEBGI3GvNqUonWsvNDzQkICT06GhJ7+pvcqKirwgx/8AB9++CFWrVrFhD2dTjOhJ8eUT2VvamrCrFmzYDabEYvFFM5y3rx5mD9/Psvy7HY7jEYjbDYbDAYD9Ho9RHFwTw8abzKZRDweRywWg9/vR1dXFx544AH09/fnHRsAhTGy2+1wuVyw2+0wm80wmUwMm8PhYAqh1+thMBggCAK8Xi9sNhui0SjjVTHwTY2Pfz2SXC5ZsgQrVqyAKIrwer2488470dvbW3T4CIvFYsGCBQtQVlYGq9UKi8XCeBcOh/Hzn/8cfr9/iM7Z7XY0NjairKwM6XQaHo8HJpOpqLDxr0/HnvCONZ1O48orr8SyZcvg9/sRi8UQCAQQj8cRCAQQiUQQiUQQjUaZfvr9/pzgGgmbTqfDNddcgzlz5sDpdGrqnCAImDVrFnOovD0hbO+//z4ee+wxxks1FULn1PbS6XQye6m2KXa7HbFYLG86V5SOVR2d8FEkPSiS5hWC3l+8eDFaWlpQV1eH3t5eGI1GCIKATCbDntWRCp8F5pK6u7shCALOPfdcOJ1OXHrppZBlGSaTCa2trcwRkfNRO1a+HELRZSwWQywWY3O2dG/yjY3nWyKRwI4dO2A2m2E0GmEwGCBJEiwWCxwOB66//nq4XK4h2AwGA77yla/ggw8+wAsvvIBUKoV0Ol1wvqnxAaOXS5vNBrfbDUEQkEqlYDKZWPZHyl1ofHV1daipqYHJZILZbEZZWRnsdjurOJjNZlZtufnmm5FKpWA0GqHT6Rhmi8WC2tpaGI1GlrESXwuJbSz2hP5ns9lw9dVXw2KxIJlMYvr06SgrK2M6JwgCYrEYMpkM+35ZHpy7S6fTcDqdmDlzJnp6etDT05MXbG1tbWhra0NzczPKysqy2hMaKzmZWCyGeDyuwDZlyhQsWrQIH3zwAfbt2wegcDpXWVmJefPmoa2tbVT2kmzK3r17sX79epZk5VIui86xDlfS4CNIKpOqFcJgMOCqq67CRRddhEwmw24yMOiIALCIhQSKiI9UciE0giCgu7sbvb29aGlpgdPpxMUXXwyTycRKGBaLhUVevKDwZTl+rGTgTCYTBEFAOBxm9ybf2PjnZDKJd999d0g2oNfrUV1djeXLlzPHSmUbQRDgdDqxcuVKbN68Ga+++ioLGAhDIfimhe905JKCCVEUEY/HYTKZYDQaWdBQSLkkDHV1dZg7dy6sViurlphMJuZYebm86aabRiWXVNIvFDbCp34eLd8kSWLvV1RU4Mtf/jI8Ho/C+QiCgGg0ikwmA0mSkEqlGK5kMglgUBecTidaW1uRyWTGzbFmw0bBwKxZs3DttdcyXvL2hLARiaLIsjij0chK11Q5mjRpEhYuXIhMJoMPP/yQ4QTyq3M6nQ41NTVYvHgxbDbbqOyl0+nErbfeirfeeguvv/46y1yB3MllUTlWLQHhDTMv/DQ5TfORagXho00qCaTTaYiiyFJ+eibiJ69ziU0URZhMJlitVoXQWywW9h4fedH8ADlLWZYV3ZaUkScSCZjNZiZUhcCWjW/EF4PBwAy21WqFyWRi/ydhlmUZs2bNwpo1a7B27Vq88MILBePbaPENJ5eUscuyzP5H2R451kLh83g8mDt3LioqKmAymVjZdzzkkgKIYtC5M+Hb0qVLsXDhQgCAwWCA2+1mDTG8zvHP8XgcqVQKyWQSBoOBOVyv14t33nkHwWAw59imTp2KG264AY2NjXA4HIxvVAI2mUx46aWXsGHDBuh0OrhcLnzzm99kwR9l2jw2CgovuOACVFdX429/+xuOHTuWV52z2+247rrrUF9fD6fTCavVelpyOWvWLDz66KNYu3Yt1q9fn1O5LCrHCmjX09UlG95Q880VNpsNLpeLtbf39/fD7/czpwucikR4AeLLq/w4cpUdAEA8Hkc4HIZOp0MqlWJGlsoUVCqkuQIyBjRml8sFnU7HrtPpdAiHwwgEAgxfvrGRIZUkiUXyNBY+6AEAv98Po9HI7oFOp2NlNJfLBZfLhQsvvBA7d+5k/6Pvyjff6HvPVC75OTrCQA+iQuEzmUyor69nnaJUPTAYDOxBfKVyfjAYZNUhh8MBh8MxxBDRnGt1dTVSqRQSiQS6uroKqnPD8c3j8cBsNjPHqtPp0NrayipffKcor3P8PaMHLwekB36/H93d3Zrzd+OFjTBZLBbU19fDZDKxZSYGgwGpVAoGgwHhcBgHDhzAO++8A4/Hg9raWpaBqrN1NbbKykoYjUZs2rRJMY5c6RxV4yRJgtPpxPTp0+HxeNj7JJfkUGncfDmefEE6nUZTUxPKy8tzblOKxrGqAWUr16gNGG+0li5dihtvvBE2mw1dXV1YtWoVTp48yW4gfR8ZcP5m8nMNucYmyzJefvllNg8gSRKLsug1Rc80Jn6Ooby8HKtXr2YCQvSb3/wG77zzDkKhkMKx5gvbnDlzcMEFF8DhcCAej+Pxxx9HJBJRGBu9Xo9QKIRVq1Ypxg4MGiw1NsJOfOPfyzU2NT76+3TlkjIYKiGqx1pIuRRFkTlSWhZFRstisbDKAj0CgQDuu+8++Hw+yLKM5cuX48Ybb2QBIY2dmrYuu+wyRCIRdHV14a677kJvb29BdG44vhkMBnzzm9/E+eefzzJs6gcgvqmxAWBTG5SVqp0QzVG+/PLL8Pv944YzGzbCd+jQIfz0pz/Nak8AIBwOAwDuuOMOnH/++TCZTIjH40y/6B5oYeNLyLkgHl97ezvmzZvHKifl5eWacknjIt7w3c1erxerVq1CX18f63DOtc4VjWPVomzlDj6yoEgyk8mwzrBUKoVIJILu7m709fUpWquHu1lapYBcUTQaRSwWU5SgeOdDgg0os5mWlhbU1NSwRgNeAAKBAIvMCoEtHA6jp6cHkUgEiURCU1gJj9frHYKNSjNUThOEwbm/T3/609i9ezf6+vpGHEO+GypGI5fUaUnPvLEuBrkkR0MPWZZx4MABliWYzWb2CIfDOHnyJMuE/H4/w8Zn5IIgsLJyJBJBMpkcEkjlAxtPWnxraGhAU1MTGhsbUVlZyeb6yehmw8bzLJVK4f3330cgEIDf70c4HEYkEoHf74ff70cwGNQMqMYTF48tlUrB5/MNa08aGhpQX1+Pmpoa2Gw2VgrlsakrK4IgoK+vDwcPHkQkEmG/n0u+kU2n9amUjKgDGL4iyQdCvC/o7e3Nm84VpWPVKt9oRROZjHI3ExLmdDqNUCiEeDzO/k8GnK+l080d6SYXAzZgMEK+7rrrMHfuXEiSxEqthI8EplDY9uzZg46ODkUDCGVuI2EDwOZxaKkCAFx++eX47Gc/i29961t46623huCaCLwrZrmkDIzP4GKxGB5//HGEQiFFlkJGli9n8thoDlkroxEEQWHQioVvV155JVauXAmTycQCO2ri4ZvLhsMWCoXw0EMPoaurizXG8NdpBbrjiY1Iq0qVTSYvueQSLF++HLI8uCvRcHwjGREEATt27MAzzzyjaF7KJfHleoPBwAI8k8nESsHkXLPxrhA6V5SOlUhLSIjUEQVFlxRJJRKJYddcqZVc63tzSaPFVlNTg0suuYT9XVFRoRDqdDqNd999Fzt27EBnZ2fBsfG/O1q+EZFyUEZHy2zU36sl/PniG3D6vJs2bVrRyqXf78c777zD5qosFgvS6TSi0Sj7TQra+HFo6RwAZpyJdzTt0dHRgUgkUjQ6V19fj/nz56O9vZ3Nt1GGQ05o586deO+99wAM7oO8cOFCOBwOho3w8Y5UnRGN55zqSNjUGIm0ZLKlpYXt1Q0M5RsFQvQ4ceIE1q9fjz179ihkIFfkcrnQ0tLCNlbhG1L5v/mAjecd321fCJ0rascKKCMydTmRSK3koji4ww1f3lB/drjIJJ+Kzr9WYxNFEdXV1bjuuuvYuEVRZJGXIAx2Om/btg2///3vkUwmiwKbWrFH4hu9FkVRsdsLdcvya8zUWTlP+Xau/GstfBUVFbj22msBoGjl0ufzYevWrcxI8c1XfLVBjY3Gk0gkGDa+ZMg71ldeeQVvvfUWmx7IFzYtojJvXV0d/vVf/xU2mw3AqaV4VKqPRCJ455138PTTT0MURVRUVOCiiy5ijTT0Pclkku1yVsw6R/ytqanB9ddfD1mWs/KNd1iU/R0/fhzPPfccW0KUa2xOpxPz5s2D1WpVlO7VThZQ8o76GMiRFkrnitqx0k2gm8hnL7zQ8NEGv/CXruGNM1EhS4qjweZwOLBy5UrU1NQohJmMFeHirysWbERqbDypHSw5Vl5p+IwgW8mmENhGK5cUPfOGa6LLJWGbOnUqrr/+etTW1irWAarlcrjpiUJgczgcuP322zF16lTFcgwK5GKxGPbt24c//OEPOH78OJPLcDiMhx56iDU3ESWTSdb1W2i5BLLrnM1mw8qVK1FbWzuiPeHvSX9/P37xi1/g0KFDWTO7XBH/G3wXN98LoOYddaDz+Aqhc0XrWIcrbQDZ1xnx0Q09Z6NClKOA7NisViuLoMvKytDW1gan04lkMjlk/oQiMa/XqyjFaeEpBmzZxqQWZL7cQ916w1GhnOpo5JKvMkxkueTHIggCysrKUFdXh9mzZw+ZQx+Jd4XGptfr0dbWhpqaGjZ2Wo5BDYVHjhzBu+++qwjoqEGJ+MaXH9Pp9JBsvBj4prYns2bNGpU9IWzRaBTd3d1477334PV6s9rcXFAqlUIoFGLrhdWypVWKJ16odU6SJJSXl7PGNLqG3189Go2y5sjxwFc0jpWUVl3OUBN/Q9WM1uv1rPU6mUyypgvKjrQirnxFXqPBtnjxYtxwww2sdEHnWqrb3UVxcNOBnTt34he/+AX8fr/inhQDtmzvaUWDvOIAUDQo0LwJ/Va+s4GxyCUAxVKqiSqXPDan04l7772XddBqyaUkSVl5V2hsJGfkVIHB+//rX/+anT6TTCYV15Nc0g5uxco39XtLlixh9oRWTWjZE1o2tGvXLvz85z9nDor2OaalVfnUua6uLjz77LO49NJLcckll7Ax81MU9FkKYIkfanx2ux0/+9nPIAgCk8tUKoVAIIBYLAav14udO3fikUceGTcMReNYs5FW1KxmMk10NzY2sm3U+LkQNRVCGbSIxuZyuTBz5kw0NzejoqJCsTQDAFuOQ63mqVQKu3fvRkdHB7xer6K0UyzYslE2pwqc6gDkNyOgMiN/fTFgG41c8rssEe8mklwS0TimTZuG+vp6VFdXw+FwDJFLQRDYmklqCFIbwEJhEwQBU6ZMQUNDAyvn8mPz+/3o7+8fUn6kZ36DFjUVGls2slgszJ5QqRQYak/49bher1eRhfPdzUD+sKXTaYTDYZZd85Uedamb7r0gnOpwV8slbahjMBiQTCZZgBuNRpFKpVhmP174it6x8sRHmLwxnjFjBn784x8rtshLpVKKPXP5BphCZD7DUXNzM1avXg29Xq8YEwk931ouSRL6+vrw0EMPobu7WyHwhcaWrfRL2Y66A5j+BwwqO21MYLPZYLVamXFW87BY+EaUTS4lSWJ77RLvJpJcAkonu3z5csydOxcANOWSMPNZHpVIC41NFEVcffXVaG9vV+xapg4issklv+FHMfFtOJ2jv+lBy1a0lqrQntb8deoO50LxjZ9X1dqAZSR7qSWX/Mk29Ho88RWlY1WXNXhmA0rhpxo6HaJN69FIYNTfoZUp5JN4bBaLBUuWLMGMGTMUjQM8Lr1er9gNRxRFlJWVYfny5ejo6MDatWuLBhuRmn+ESf1/PiPg172qyz35WrIwEo1WLi0WCxYvXozp06ezTRImklzy45FlGeeddx7OO+88TJo0ifFFSy7VmcT27dvxj3/8A8eOHSsIJiLeSfJrNdVZmJZcSpKEJUuWoKKiAs8//zzb67dY+EakpXP0LAiD2yq+9NJLiEajijIpHSO3bNkyNDU14etf/zreeust/POf/ywKbB999BH+/ve/Y/78+XA4HOx9Nb7h7KVWMxfvRHOBsygdK0/ZQNPNpFIbHXdFk92056fW/FExCAww2FywdOlS1NbWAhjKbHI2/G4jgjDY2bh8+XJs3rwZL774omK9Z76xjfb3eAUgJSDiHSpFnfxenmrDVww0nFzabDYsW7YMtbW1LNibSHKpHsfs2bPZUXGyLLPSIZ8ZqA16JpPBu+++i9/97nfsFJhCk1anM19GJP7wjliv12PRokVobm7Ga6+9xnaRAgrHt9H+Hi2XyWQyCIfDWLt2LWvQ4UumdFpMY2Mj7rjjDiSTSWzdulVz3jbf9NFHH+Ho0aM4//zzMXnyZPa+OoMmW5lNLvmzVtVLbM5qx8ozMduDFECWB1vgXS4X7rzzTkydOpUZLACKzez5yEbtuNQP/n/jWRbIhgc4tQVXIpFgmVomk0EgEMBvf/tbBINBho0iTLfbjW984xtobm7Ggw8+yE5rKAS24fBpKaUgnDpdRJ1J3HHHHWhvb4fVamWbRNChy+Rkiw2bllyq9w+eaHKpxsYbaAAKfDw2vkxKWIsJG42NDr0gnSMie0L70VKQR5WH733ve9ixYwceffTRgvIt2++pf/uVV17B3r17IQgC67Ll9znmq0T8ftaf/exnUVNTg8ceewwdHR0FxwYAzz77LLZt24Z/+7d/gyRJQ+wlYdKSy4GBAfzXf/0X+vv7Gb5LL72U4QWG7lo1VnxF41i1aLhoyeVyoaamBnPmzEF1dTV7n1dsXtFH893qqHusxM/NkGOkiXNBGFyM3dfXB1EcPJGCX581MDCA9957Dz6fj10vioPHzVVXVyMajaK8vByf+tSn0NHRgYqKCsRiMSSTSbYnZi6xDUfqe8uXgl0uFyRJQigUUrwvCAKqqqpQX1/PDAG/UYTdbofb7UZPT0/O+Xa6+NREymyz2Vj5ipfD8vJyRCIRtl/ySN+db97pdDqUlZUp5uT4BfZa/CWHRRud02bnxYQtGAwy40q7TJF+JpNJSJKE+vp6VFVVKc70pOUYNTU1qKysBABW4qe1k7Setb+/vyDY1HzT6/WIx+M4dOgQczQul0sR2Iri4AlFHo8HABjfqqqqYLVaFaXXQvJNlmUcPXoUoVAIXV1dSKfTQ+ylIAhsL2Hag12SJKTTaXi9XmzZsgW9vb1IJBKorKzEtGnTEAgE2MEDer0eZWVlbEUGPwebSqUU28eOhoR8TkgLgpD1x0jp+LVKfKbGC4ROp8Ndd92F9vZ2VFVVsYYXfhlDd3c3brvtNnR3d7ObxRtq6nijVnS+RDDcbhyyLGtaVDU2QRAwd+5cVFVVsXJgeXk5tm3bhu3bt7OuV7fbrYiyCJ8sywiHw2wnFHro9XpUVVXhv//7v1FeXs6MeH9/P8LhMLq6unD//fezbuFcYNPiGx9AZOObJEm466670NDQgNWrV8Pn8wE4VcYpLy9HXV0dHnjgAZSVlSGTySAWiyEWi+HEiRM4duwYvv/9748rttHiG41cCoLAeOl2u3HBBRfg+9//PmuiIEXt6enBli1b8MADDwwJIHItl6PB5na78d3vfhcVFRUwm82w2+2w2WyK5VAGg2GIznm9Xtx9993o7e1FMplEMBiE3+8vCmzkdGjqiHhF/w+FQgDA9FE9708bC0SjUXi9Xnzxi1/E0qVLEQ6HkUgkEAwG8d577+GRRx4ZcsBCvnTO7XZj1apV8Hg8zPHwvKVmJf6gc3JKVqsVAJjORSIRfOc738E777wz7nw7Xd4RvuHspZqfPO9kWWYBXzKZZF36yWQSNpsNd955JyRJwokTJxCNRhGNRuHz+RCLxRAIBHD8+HG88cYbQzAOh6+oM1Z1cwG/1R+dvSrLpxYI81EU3+nFM364Drfx7nyjo7fo4XA42Fo4Ekp1RkoCwisOv5uUek/STCYDs9kMj8cDk8k0ZMuxXGHT+n51FMvzrba2Fg0NDaitrYXT6WRY+DIdZaxkxPg2f6fTqbkRRj6waf0e/8yXqTOZDFtoPzAwwMqO/DjLysoUmSz/v3zI5XBE5Ww6UYQMNG0bJ4qiYm9c4l1HRweOHDmC48ePw+fzsWC2WLDJsoxgMMjKhdl0zuv1DnFcZLB5e8LrXCKRgF6vV2R4+cCm1jniW1lZmcKxUqn3ww8/ZGPnDwI3GAxoaWlhGV6xyST93mjt5Ui8o3OrqXpI98DlcjEHnk6nWRe/0Wg87fEWvWPlDTBfTqMMlG5uLBZjkQwAdtMoelQ7I15o1EIy3nM9/PFNvJHVwkavqVRMAkTvybKMeDzOcNA8Fp850ffnGls20sJ28cUX46abboIkSczh0Bo1Gv+KFStwwQUXAFCe1sMrUqGxZcOnxbtEIoF4PA5Zlod0oxK2QsnlSNjomeayiE+8QSOdEwQBv/71r7FlyxbFtcWK7Ux0jndgfCCltQVnIbHRg7JLwtHf348f//jH8Pl8Q5xORUUFfv3rX6O8vFyhc+qMdCLo3Gh4p5ZL+j9vX7SanE6HitqxZiMeON1M/nnDhg04cODAkAynEEJByqfe0BwYLKldccUVCAQCePvtt4eMSy3M/LX8hD0vHOrvyDcJgoCLLroILpcLmzdvZovS1cLNC+15552HT33qU2x+lcauNZ9H31GsxPNOrcT8PeBlsVDGajhSl/soGweg0LWdO3di165dOHLkCMxmMxYvXgyLxYJMJoMtW7Zg27ZtRYdNi0ajcwBQX1+Pyy+/HG1tbex/0WgU69atw/79+wuKLxqN4oUXXoDVah1SFo3FYgiFQooj8KiawmepE13nhuOd+hq6jpdz3q8kEgm8//776O3tPe0xFZ1jHelmEPE3gT8JBQA2bNiALVu2sGv4G6/13plGJSMRL9jqOQNg0LF+4QtfwLFjxxTRPi8Y9JqiTzXxiqBVis0VtuHG8elPfxoNDQ3Ytm0b4vG4ZiTId+G1t7fjlltuUeDlvzPbOrR8YaOxZCO14+AjaH5DCPXnyVHlWy7VpIWNlzviAY2X17nt27fjqaeegk6nY6f5VFRUQJYHtwbcsWMH4z9f9s8HNrXO8bpHGNV4tXSOgmNZltHQ0IBbbrmFzTkKgsAcGjUN5lvniKLRKNavXz/EJvAY+GyPX6+r/s5C2xMaSzYaLe/U16h9AaD0JfQABk/L2bNnD2u0PB0a0bEKgtAA4HEAVQBkAL+RZflXgiC4AfwJQCOAwwCul2V54LR+Xfk77EZqRUxqIaHyKnV08U0GNI/CGwKibFlCtvfGQjweGtsFF1yAWbNm4W9/+xvC4TB0OvgPTekAACAASURBVB2am5vxve99Dxs3bsSbb76p6Yh5bPwen7xx5rcfyzU2HiPPK3WGfs4552D58uWYNGkS41d5eTnuvfdepNNpGI1GTJ48mZVvALCmCp5//NxyvrCp8Y1GLvlnXkb563hZ5TFkw5IP3qmx0RjV+kX8pfcWLlzIdmMyGo0oLy9ncnnllVdi2rRpCIVCSCQS8Pv9OHDgAP70pz/lBVtdXR0uv/xy2Gw2tv90LBbDU089hXA4nJVvvM5JkoSvfOUraGlpgU6ng9PpVGR5xaJzWv9XY+Px8TsS8Zuy8PZE/cgHNjW+09U5LXupDgrVGGhaKpFIsAc//3omNJqMNQXg27Is7xAEwQ5guyAIGwDcCuBVWZZ/KgjCPQDuAfCdMxrFCMTfZIvFApfLBZPJxBRcvc0VX2cnypYN5FJAaA0mTxUVFbBYLNi5cyf6+/shSRJcLheqqqqwb9++IQrAR5rq93mB45Vcq2krn0SBT1lZGRoaGjB37lyFcZYkCXPmzGFLOWKxGHp6egCAzfloYZNlGQ6HgykBdfAVini5pGctBSflJl5Qh2ZlZSX6+/vh9/sB5E8uR0NaBoqyNpqnMxqNMBqNaGxsBHBqHSHdj9raWpSXl8Pv97OlKOl0mp2wwgdMdAj6eI3dYrHA7XZj2rRprKvZZrMhEomgsrKSNTJFIhHEYjEms263m3V9U2A0adIkTJ06FR6Ph5XAgeLTOS2HpOV4qHqi/j+vc5lMBna7HWVlZejt7c0aPOSaTCYTO1iFeJRKpRAOh4dg0LKXbrcber0efX197Dg5i8Wi6AoGoGjIo32KzyRTJRrRscqyfBLAyY9fBwVB6ABQB+AqAJ/9+GO/B7AROXCsvKCIooirrroK1157LdxuN1NsMtD84mcVBpYBqbtqsxmysQqQLMt49913cfDgQSxZsgRWq5V9p06nw80336xQZGqFV2fevKCocQGnynK01i4ajTKsucI2EgnC4NFi//Ef/8GWGvFZtiiKbE9no9GItWvX4k9/+hMEQYDH48FPfvITttyGNomIRCKQJAlf+9rXEIlE4PP58Oabb2LTpk15xcZjpOdskbLRaITVaoXBYGDZAEXIbW1tWLNmDR5//HE88cQTeZPL0RA5FV4uiXcDAwOaTTDEu9WrVyt4x8tlNBpFVVUVbr/9doTDYUSjUYRCIQQCAbz88stZu75Pl8xmMxYtWsRK0sApPpFciqIIs9mM5557DmvXrmWl7P/8z/9ERUWFYg36Qw89hGeeeWZYbIXWOZ6Gk8nR2pNUKoXly5fj0ksvxY9+9CP09fUVBNvFF1+MK664Ana7HQaDAVarFXv27MGaNWsAYFh8kiThW9/6FiZNmoRvf/vb6OnpgSzLmD9/Pq666ir4fD52QEE0GkUkEmH8fPPNN3H48GHG29Ol05pjFQShEUA7gHcAVH3sdAGgC4OlYq1rbgdw++kOTKsWLgiD28XRWYo6nY61R/PrsgDlkU7qLrBsy3DUvzcSjYSN5hePHTuGVCoFp9OJ7u5uHD16FBaLBTabDVVVVcyQTZ48GRdeeCEOHjyIQCCg2T7e2tqKyZMns9Mo+B1TqIyhnufJBbaRiFr/iT+8cSa+BQIBvPfee9i/fz/bLIEyAups5B+pVApmsxkAWLfqmWAbC75scqmOnHmctD8wv+sSZfQmkynvcjkSNkB5sDTPO4vFgubmZgSDQVZOpLktOvFGSy7j8TjrZjebzey3qElkuPm008UmCAIL5tTzZhT00QYRM2bMgNfrZZWjhoYGFuweP34cnZ2d6OrqgtfrVWwaQDK5f/9+fPTRR6z7u1A6R789UvVEbU/463mdSyQSOHnyJDo7O1lJdCzYzhSfwWCAw+FgtoReawW2PL4pU6agsbERjY2NqKysxNy5c9HX14d4PI6mpiY4nU6k02nodDr09/cjHo8jkUigt7cXJ0+eRH9//5gCvVE7VkEQbACeBfBNWZYDKqbIQpYFv7Is/wbAbz7+jqycUJdp1XMI9DdtskzlX4qoaY9Pvh2b3xSCmi345TdaUSY/lpFoNNii0SheffVVnHPOOWhsbMTbb7+Nt99+G5IkoaKiAr/85S+Z0CxatAhLly7FqlWrsHXrVlb+AE5lEbfddhvmzZuHeDyOZDLJFnOHQiGEQiGEw+EhC9RzhY3/PvXvUNMLfwwcVRd0usETKHbt2oV77rmHCTgZLv4syEgkgmAwiFAoxF7HYjG2MP9MsI0FXza5JAXn5yWNRiNbT0j3hF8OEYvF2OL7fMvlSNjUWSvxzm6340c/+hH7H11DOxBlk0vKTqPRKMtWo9Eo+/x4YuN1X73sTo1t0aJF+OIXv8jkktZ4GgwGvP7663jssceQSqVQUVHB5JKwBYNB/PGPf8S2bdsYhkLqHFG2+VSyJ3wz2XA694c//GHcsI0Fn5p3vN6pdY7eX7JkCe644w4kEgmkUincc889SCQSiEQirMyrJZe7du3C5s2bhzQWni6NyrEKgqDHoFN9Qpbl5z5+u1sQhBpZlk8KglADoOeMRqAidbmBGAqAzVPxnYokJPQZcqKkTGrnqpUd5IomT54Mo9GIw4cPo6+vD2+++SaOHTvGnH8oFMJzzz2HGTNmYOHChaxkuGDBArS3t7NMh29yqa6uZtunxeNxJiDBYBAbN27ERx99hEgkotnkk0viebVp0yacOHECS5YsGbLoXBAERCIRPPPMM9i3bx87cxYAU+5oNAqDwcAcKuHz+Xx4/fXXmXM9cuRI3vENJ5f8+3xpl66npohIJMJ4Rw4pn3I5EjY+c1EvueFLb/y1qVQKfr8fzzzzDPx+P9sxKx6Ps0ah5uZmyLLM3ufnWceTkskkdu3axbY8pV6HWCwGURSRSCQUjTrAqflh3p7QPaCsmk6GCYVC2LZtG7Zu3YrOzs4hc6z5IjXfzGYz5s+fD6fTCYvFgl27dmHPnj3IZDKw2Wy44YYbYLPZ2Fw5MFhVo/NpyaFu3boV27ZtKyg2wkeBDD1ee+01HD58mK0CoXFZLBaGTxRFzJ07F5lMhukcL4tkUyhYD4fD6O7uxvbt23H48OFxsZ2j6QoWAPwWQIcsy//F/WstgFsA/PTj57+OaSQq0jJkPHP5qIUUn1cG3pnyWxryk/DqyIhejwcJgoCGhgY4nU4cO3YMAwMD2Lx5s6J0Fg6H8Ze//AUnT57EFVdcwQzMggULWERNhozwhcNhFlXG43EEg0EEAgEEAgFs2rQJ77//vubuKeOJbTjKZDLYvHkz9u3bh3/5l3+BzWZTKCc51j/+8Y/o7e1VZEpkwEKhEERRhN/vRzAYZDuleL1evP766/D7/WOKnMdCw8kl74D49XD0mkr1PO/IseZLLkeDLZPJKJwfP83Cj4cPBhKJBAYGBvDEE0+gq6uLzV0RNpvNhvLychiNRhYU0v3g5XU8KJFIYPfu3QgEAmhpaWHleJqaoWkEPvDh7Yl6GoIP+HQ6Hfx+P7Zu3YqnnnqqqPhmMpmwcOFC1NbWoqysDE888QTbhN9ms+Gmm25CVVXVEHuSSCQQCAQQCoUYtqeffpptPlNIbDSXHY/HEY1G8de//hWBQECRdBC+G2+8UYGP7/TldY4P1iljPXHiBMtUxwPfaDLWzwC4GcBuQRB2fvzedzHoUP8/QRBWAjgC4PozHgWGrisi40TvUyRJjSsWi0VRjhIEgc3nqA0WKYe61Ea/pTWGsZIsy9izZw8kSWLzL9mw7d27F9/5znewYMECXHnllVmxpVIpBAIBhjEejzOH+o9//AOHDh1SGItcYVPjJOKxJZNJ9Pf3w2AwIJPJwGq1Ih6Pw2w2M/5QtkrfkU6n0dPTgwceeACiKLJSKT9PR516+cA2HD61XPIGh+SMZJXm5bR4FwwGFUs2ioF3Pp8Pv/rVrxSHRZNzcrvd+Pa3v83muXi57OnpYQZMrXOhUAh/+ctf2MYEvFNOp9OKysV4Yevp6cHatWsxa9YstLW1ARhsbMpkMmwTCzrHmde5Dz74AL/97W9x+PBhFiBEIhH09PSgo6MDTzzxBKs8FRPf1Dp3wQUXYNq0aQyfKIoIBAIATlX2SBaDwSD27duHJ598Ep2dnYpgL5/Y1N8djUYxMDC4ilOn0+GGG26AJElwOp1sqoW2jhUEAX6/f0R7SY41EAjA7/fjpZdegtfrHTenCoyuK3gzgGydBZeP6de1f4+9zmQyijVI6XQaPp8Px44dg9lsZnOsRGSAaZ5RazvDbBFXLgSFBAIYevwQj21gYABbtmzB5MmT0dramhUbHf1EDoYE5sCBA3j//fezCka+omYeWyqVQnd3N+u4s1gsbC2h3+9nDpMfL2WsO3bsYIZiuMaefGHTwqeWS/4zFEknk0m22w1tSh+LxXDy5EnEYjFW3s63XI6EjXacUS8XkiQJHo8H11xzDdxuNwClXHZ3d7MMVK1zyWQSnZ2dec14otEojhw5Ao/Hg5qaGiSTSba8y2QyIRKJMMfK69y+ffvwxhtvsLGn02nFQRA7duxQNKIVC9/4ZSJ6vR4ulwu1tbXsCDwqiwJglbxAIIBoNIquri58+OGH2L59e1Fgo9+hEjyduT158mRYLBaUlZXBarWyfdglSVIcA0fVBnKoZDepAkbz/MFgEEeOHEEwGBxXuSya021UnwMw9Iw8URRhtVphtVo113OSIPh8PkV3LF+uUU9Kny5++QxOoxhPbLyjIQdGjSDFhE0URdYlqt5eDQD8fr/meAljvvh2pvjUvOOf6fWcOXNw1113MSyhUAgDAwNYs2YNAoFA0fJuOGzUPUt7H/P8SaVS8Pl8QzZNKDQ2ap7jl2OogwZe55LJJJtuoPFSuZH/XzFg4/nmcDiwcuVKlJeXw2azsWCWlrbp9Xp2HQVEkUgEfX19WLNmDfr6+vKC7XTwzZkzB+3t7WztqcPhgNFohN1uZ9lqNnykc4STSsL8nK3f78dzzz2HcDg8rviKbktD4JQgE4NJyWVZZjVyvrNN63r+kS36ymdQwY/tk4CNqgu8kVZ3JGpdX6zY6Hez8Y7KcTy+vr4+bNmyRZGN+/1+9PT0IBQKFRW+0WKjcr3W9cXKO5rP5Tu4z0QuaS1nMWHj+ZbJZNicIQDWpU1rcvl1qxT8xGIx+Hw+tlFJMWEDgEAggM7OTjYlQV3b5GjpkQ0fVcbi8biia53+Jsc73viKMmNVXTPktdZ7wFDm56KMMdYIU3XNkNclbKfeywe2j8eSM3xqQ612QPz7Y6Fi4d3ZLJfFjs1ms+Hqq6+G3W5nyxApk1OvLuDXivv9fjz55JOKcujHYzsTSPz146JzfOWO/h7uORvf6PVwf58OTbiMlSeKyOi11v9Hun60n803lbANf/1oP1sIOpvxlbANf/1oP5tvSiQS2LlzJyuNam2cACiDO74DvFix8c5P3auiVWEY7nu0XueCij5j1fiO075mPDGOZ4Sp8R1nMp6x/iz/XZ84bMDZja+EbXgqYRsynrH+LP9dn0idAyZAxqqmYoqkxptK2CYunc34StgmJp3N2IDixjf0gM8SlahEJSpRiUp0xpTvjNULIPzx80QgD5RjnTzMZ0vYiodOBxsAhADsy91wxpXU2IBPLu9K2IqHTlfnJhK+09W5/M6xAoAgCNtkWT4/rz96hnS6Yy1hKw4qYRv7NYWiEu/O/POFpLNZLs9knKVScIlKVKISlahE40glx1qiEpWoRCUq0TjSmByrIAgLBEHYJwjCQUEQ7hnlZb8Zy2/mmU53rCVsxUElbGO/plBU4t2Zf76QdDbL5WmP84znWAVB0AHYD+AKAMcAbAVwoyzLe8/oC0tUohKVqEQlOgtoLBnrPAAHZVn+SJblBICnAVw1PsMqUYlKVKISlWhi0liW29QB6OT+PgbgguEuGI/dNgpNudwppdD0ScQGjA8+9V6sdHxVvuiTyLsStuKmXOtcoamgOy8JgnA7gNtz/TuFoBK2iUvjja+5uRnTp08HAMRiMWzcuBGxWGy8vv606GzmXQnbxKWzHR9PY5ljvRDAD2RZnv/x3/cCgCzLPxnmmrM2SsknNr1ej2nTprHzB7u6utDd3T3m7y0GbLmiXEfPHo8HHo8HwGC2evjw4bxmrZ9E3pWwFTeVMtYzo60ApgmCMAXAcQBfAnDTGL5v3EjrqK6zhQRBgMFgQGtrKywWC4BBfOPhWMc6rrHe54nMN6/XC6/31OYs/BmfdDrHRMY3EpWwTUw6m7EB2kcDjuWouNHSGTtWWZZTgiD8PwAvA9AB+F9ZlveM28hGIK2TDbKddjCac/qKiUbCptPp4HK5YLVaIcsyzGZzQRXE5XKhtbUVnZ2d6OzsHPazZzPfgMExm0wmfOYzn4HZbIZOp8MHH3yA/fv3a34WmDj4zmbelbAp358o2ICR8VksFlx22WUwmUyQZRl79+5FR0eH4vPjjW9Mc6yyLL8I4MVxGsuoKNuhxIIgwGw2w2w209gQCASQyWQ0z/KjDKKYBGY4bPxrnU4Hq9UKm82GTCYDh8OBsrIyhMNhJJPJvGOTJAl2ux0GgyHrZ3gMoijCbrdDFEV2TiQfWfI8ikajiMViRcs3SZJgMpmQSCSQTCZhtVrhcDgwefJk2Gw26PV6hEIh9PX1AZiYcmk0GmE0GhGNRpFOp9n72WQUwITBNlqd4+lswyaKIhwOBxs/YSAZlWUZyWQS0Wh0QuLT6/Voampi9tLv96Orqyun9rLoz2PVumG8MeYf8+fPx+c//3kAQDAYxKOPPgqfz6cQEK0HMPrywHjOiZwONv5RVlaGu+66Cw6HA5lMBuFwGIFAAE899RQOHDiQd2yiKMJgMCCVSrF5xeGwORwOfPnLX4bL5YLJZIJer4dOp1OPBZlMBhs2bMDf//73nPFtNPiyXAMAqKurw+c+9zns2rUL77//Pr74xS+iqakJZWVlMBgMMJvNyGQyyGQyAIBAIIA1a9ZMKLk8//zzcd555+Gll17C8ePHh5VNGvNEwUbPo3mcrdhcLhe+/vWvw263I5PJIJlMMkeaTCYRiURw+PBhrF+/fgjOM8GWb3z5tpdAkZ/Hyt88eqbXlO2IogiXy4Xm5ma0traisbERABAOhzFv3jyEw2Gk02mk02lm+OkRDAZx5MgRxU0URREejwfJZBL9/f0Fx8Y/U7ZqNBrhdrvhdDqRTqcRDAbh9XqRSqWg0+mY4pMx5ykXgVQmk2EdsIIgoKKiAnq9Hj09PUin0wohnzJlCmpqatDQ0ACn0wmLxQK9Xs8asfjvTKfTaG1thd/vx4EDB+D3+/OOTYt4nhkMBpSXl8NqtUIURbjdblRXV8NiscBgMAzBNzAwAKPRCL1er8DCvy4kPi25tFqtqKyshMlkYsuKtOSSz3gmCrbR6txExUY653A4IEkSdDod9Ho9w0XVo6amJlgsFqTTaSQSCSQSCYTDYSQSCQQCASSTSUybNg19fX2s+pIvbMPhA07fXtpsNmZ7cmUvi9ax8jeOFxK6aSQUOp0ObW1tuP/++2E2m2EwGNhnZ82axSKweDyOWCwGv9+PWCyGQCCAPXv24LHHHkM6nWY31WQy4aKLLsLAwADeeOONnAjO6WDj/6b37HY7GhsbUVZWhnQ6jU2bNuGJJ55AKpVimaMsy0in03lXdkEQMHfuXJSXl2Pt2rWIRCIMm06nw7JlyzB79mw4nU4YjUZWLuX5RmNPp9OoqanBggUL8MADD2DHjh0FxUb41I7V7XbDarVCkiR4PB7U1tbC4XBo4vN6vbDb7YjFYkzuKIjIZDIF552WXDocDlRUVMBqtcJgMGSVS975TBRso9W5iYqN1zm73c5k0mAwQK/XswY7QRCYzsViMcTjcfh8PsTjcVitVrhcLtTX1+O1117Dxo0b84ZtJHxnYi9jsRgikQibvsoF74rSsaqjEz4SoYckSbDZbLjqqqswffp0lJeXs0xAy0CTsIiiiFgsBkEQYLFYIIoiMpmM4jclSYIk5ebWjBYbCQX/LEkSFi9ejJaWFtTW1sJoNCKdTsNisbDxakXQ9Fu5ji7r6upQV1eHqqoqprT0aGtrQ1tbG5qbm1FWVqZwPKTkfKmH+GYymWAymbBw4UJMnToVL7zwAkKhUN6xAdq88/l82LRpE44ePcpk0mAw4JVXXkEymYTJZIIkSdDr9Vi8eDGcTidMJhMMBgPDSDgKyTvSmdbWVoUumUwmtLa2Dinb83JJskk6Rw5nOGyTJ0/GpEmT2Bz67t27kUgkco7NZrNh9+7dSCaTo9K5M8GWb77xz7w9Ga3OhcNhPP/88wgGg0ilUmhra8PMmTMBgPU3UIWFAsR8YBsJ32h5ZzKZ4HQ64XK5mC8wGAwwGo2QJCknvCs6xzpcSYOPQihTuOmmm1BTU8MyA7rJAFjkkUqlYDQaEY/HAQDRaBSZTIY5Vv7zfCRUKGxUsuEFRpIkGAwGXH311bjwwguZICQSCWbwCAPh4AWDj8JylYXX1NRg7ty5sFqtiMViQ5R82bJlikzVYDAwvvEBERHxzWQyYf78+Whra8Mbb7yBeDyeV2yET/0sCAIGBgawefNmiKIIvV7PyksbNmyA3+9nSm4wGHDxxRfjnHPOYc1AqVSKGWnCUSjeUaTf1taGqVOnwm63M4NksVhYMMDrmNqAUZAqy/Kw2ARBQFNTEy6++GIEAgH09/dj3759OXGsamwejwcHDx5EJpOBTqdjGChgIDkkZ0q6KAgCy2x4bHxgThkPUT74pn4mfZMkCbNmzcI111zDdE5dRSGexeNxrF+/Hl1dXUilUrBYLPjMZz4DQRCYrZQkiekjYc4ltuHwjcZe0v8NBgNrKHS5XAyDXq9njjUXOldUjlVLQPjUnm6gwWDAV77yFZx77rmora1lik//p5KNKIrsphiNRgiCgEQiwZ5pOQTdRHJUmzZtQjKZLAg2ym4IJwnI0qVLsWjRIrS0tLD39uzZg//5n//BoUOHmMCTcquVnJ+YH28ibAaDASaTiQUspLySJMFsNsPpdMJutyMajeJXv/oVwuGwIgOSJAkulwv//u//DofDAUDJt6qqKtx9993YvXs3Hn/8cdYolUtsPL6ReKfX6/Hss8/CarUilUrBbDYrSlS/+93vWNBhNBqh0+kUBrqQvJsxYwZaW1sxadIkWK1W5lgdDgfTL6vVCqPRqJBLwsY7VnJaWtgaGhqwcOFCmM1m9l3kxPKBzWaz4dZbb4VOp4PNZmMrCWhO3Gq1snk5crwA4PP58Mtf/hIDAwMMmyzLuPHGG9HU1IRAIIB9+/blTS6Hk8mpU6fi+uuvx5QpU5jO8cEsORaylWRrCDMFs7ytFAQB8Xic8b5YdC6bvSTeffWrX8WcOXPgdrsZL41GIzKZDJO/XOhcUTlWQLuerk77JUlCS0sL5syZg2g0ing8jnA4DIfDwSaoM5kM+vv7maJTp1soFGLzBzT/py5BdnV1ARh/oRktNnUEJooiJk+ezDLVdDqN/v5+HDlyBFu2bFE0LQFggq/Gxo8jF9gSiQQikQh0Oh2SySQre+r1ehY1GwwGxGIx7N27F/39/axaQHg9Hg9OnjwJWZbhcDgUUanJZEJ9fT26u7uzVhVygY2+l+edTqdDWVkZy7Ypm4tEIkgkEqisrFQ4HkEQ4Pf74ff74Xa7GR/9fj+CwWDeeScIAnP8oiiisrISjY2NsNvtDA89qBzPyydf6SEjxo+Z/gecqgTZbDY0NDRg1qxZCIVCCAaDrPfBbDYjlUqN+5IOQRjsCiVsJpMJNTU1MJlMcLlcsNlssFgssNlsLKuTJIk5GQoWent7FdMvlImfe+65aG1thc/ngygONj4GAgGEQqEh48i1PSGZrK+vx5w5c5hDpeAlGAyyLI6wOZ1OCIIAj8fDsm6Hw6HIBIPBIBKJBPR6PZtvpQbQUCikWDqWS3yjsZcmkwnl5eUs2Js9ezba29vZ+CgokiQJbrcblZWV6OrqGnedKxrHqgaklfLzGZDFYkE8Hsd9990Hn88HWZaxfPly3HjjjUilUvB6vVi1ahX6+vqQSqWYISOBiMViTIn5EkMuo8vhsPFCQoLCN02kUikkk0kFtpMnTzKDTN+XyWSGGOd8YduzZw8OHjzIMs/bbrsNHo8Hbrcb5eXlsNvtLJsj40zjpIixt7cXd999N+bOnYt7770XABjv+/r68LOf/QzHjx/PC9/U+OhvQRDgdDrxjW98A5WVlXC73bBYLLBYLLBarazMRMpPY6OAj8au0+nwxz/+EU899VTeeWcymXDZZZexrI3KhJRJUuWBeGYymVjpjJdLnndahonk0uVy4e6774bD4WDNhDqdDhs3bkRnZycuvfRSeL3ecWsY5MdBjjIbNnqQfaHMhl9NYLFY8MMf/pBleBSwE38lScL06dNx3333Yd26dXjxxRfzbk9IJuvq6mC322Gz2Ri2QCCgsJUkf9/97ncxe/ZsBTaTyTRE58rLy3HzzTfjoosuQnNzM/r7++H1evHnP/8Z4XA4L/hGYy9nz56N++67jwV2NpuNzRMTZmBQJr7xjW/g6NGjuOuuu9Db2zuuOlc0jlWLtGrrdIPpBvX19cHr9SKTyWDPnj3YvHkz0uk0fD4fjh07xtYLqud+4vG4YrE7oMxQ89l0wJc6eOMkyzKcTieam5tRVVWFeDyOVCqFSCSC7u5u9PX1KbANN+Z8YKNNEqi0d+LECcTjcYRCIfT29rKyWzgcRiwWU6zvJIeSyWTQ09ODgYEBVkbkyzI+nw/BYDDv2HgiZ9LV1cWqIITNbDaz8hQZgtraWtTV1bE5OsKr1+thNpsLwjvKWCkYIGPKl9fo0dXVhf7+fgQCATYGvnuSDwb4cjAvl6IooqysDFarFQMDA0zGI5EIgsEg+vv7EQwGc+aIsmGjhyiKSKVS2L59O1KplCLjbmpqgsPhYBUUvV7P8FOFgjJBt9ut2KSGKB/2RBQHXWjlewAAIABJREFUl3u5XC5WQeE7f3lbWV9fj4aGBjZ3qoWNxu3z+VjTEs27J5NJ1keR7yYmLXtpMBgwZ84ctLW1we12s7FTVt3R0cEa1urr61nnfnl5+ZA19HSt1uvRUlE6Vq0SgJZzJWWgpod169Zh/fr1TJB4g0WCwtfS6f8jGbZ8YyPBTiQSaGpqwv333w8A8Pv9SKfTrJxNuIsRWyQSweOPP84iX75ZQt38wBMpDAURvIETBEFhrPOJjX5/NPh4RZVlGTfffDOWL1/O+EMGHjiVFeWbd6RDfLRP0T9tbGE2m2EymbB582Y888wzjBfZmoyId9l0jjeIfCmZTgPKFV6+bKjGRpk4ZWf3338/ent7FQHQD37wA8ydO1fBNy3c/PREIXROFEWYTCZNbGpbeckll2D58uWQ5cGdwLJhI52j7+f1Echftzr/WsteOhwOfOc730FFRQWi0aiiway3txc//OEP2V7eK1euxK233qrAN946V5SOlUjrJs6dOxfz5s1DTU0NjEYjrrnmGoRCISSTSYUARCIRvPrqq4hEIkO+lxyX1o3Mt0Kos1Qag9lsxuLFizF16lRWyqAMO5FIKNbe8lQs2Oj3eCPLR8H8WIn4zIfWBqqXOvDfWwhswOnji8fjCjnknaq6+zDfvOO/V91R2dXVhZdeegl79+5VTDnwY+WvJd5pEWGl5/3792PHjh3o6+vLeRBx+PBhvPHGG6xBiZp4+BK3TqdDJBKBz+dT2BIAePnll/HRRx9h4cKFcDgcik1PSC8zmQxOnDiB9evXK/ahzbc94cul5OhJl9LpNKqrq3HJJZegpaVFcawhL5PqAB8ATp48iWeffRZ1dXWora1VyHs+8WWzl4SREo50Oo1kMok333wTBw8eRCAQYE1lW7duRTqdxqWXXsqC4PHWuaJ2rICy3i4IAtrb27FixQr23tVXX83mTEnAdTod+vv7sWnTJoTDYU0mDKfI+XZA9JqPzGw2G66++mq4XC62RyvNwSWTSUUWwI+72LFpORJ6zTclkMEiY8GvHSw0NuD08JFj5SN+Kifz+AvNO7Vx7urqwp/+9CdWSh2Jd/Q5teEDlKX+dDqN/fv3Y8OGDSxYzCW2I0eOsHXGfFOOuvM3G7ZXX30Vu3btwiWXXMJ2J+Llkoz68ePH8fzzzw9ZUZBPneOXEJGs8c1W1dXVuO666yDLskImSfb4Cgavc93d3Xj++efx+c9/HjU1NUMCq3zh41/z9hIA4vE4WxdN2fkrr7yCnTt3KuRyx44deO+99zB58mTU19fnxKYUtWPlSxx8mYlq57TYly9x0HXkhPh5H3U0ovUoJDaiFStWYObMmdDr9YhGo2cNNj4Q0MrMqMnlq1/9KqZMmaLY9ELtWAuF7Uzx8Wvlhisb5ot32Rw5H9yQMRoJG38dGXO+3H/rrbeipaWFLeGgjGIiySU5X/46vkP/wQcfxKFDh7JWHPKBTRAEhWPkbaXJZMKdd94JvV6vcPyCMNit/vvf/5452gULFuCKK67Q1Dlq5so3/07XXm7cuBEbN27E8ePHWaBB1xPf/vd//xcGgwF+v3/cda5oHatWXR0Y3AO4u7ubnUpgNBoBnFIOddStnhPgqdClRK2yhiiKOOecc9DW1jYkU+Wx0XM2KkZs/Fj4MVmtVtaxWV5ejjlz5rDlKrQsIxqNssaLQmEDzgxfOByG1+uF2+1W7LebTT7ziY/POtS6YzKZUFFRgUgkolgGox4T/U1LGNRdwzNnzsT06dPR39/PGtkikUjRyyWRy+VCeXm5oiGND0zi8Th2796N7u7uYb8nV6S2H7ytIGcoiiJaW1tZiTQajSIajUKn08Hv92P37t2sOW3q1Kk499xzEY1G0d/fD6fTyaqCtAa0GHhntVrhdDrR2to6xF6ePHkS7733HltqRPeGJ1q2Z7fbIUmS4gSqsVLROFbeMRJpzde88MILrNHB5XLhnnvugcvlUjSRUFRGDQtkPLSiyXwIyGix0WfUXZXqTsZkMsmaZSYaNq3xLVy4EMuWLWP4PB4PWz/5zDPP4IknnmCZjs/nyxs2+p2x4nv11Vfx9ttvY9WqVWhvb2fLVmhtKH9dPnnHd8XzC+9Jttra2vCrX/0Kzz33HJ5//nnN8fHOuKysDKtXr0ZFRQVMJpPitCNqxtu3bx8efvjhIes8x5vGg2+E62tf+xrOP/98hVzS8jfKfopB52i86koDBQG8PXnttdewbt06tmNbLBZj9uSFF17A3//+dyQSCVgsFqxcuRIGgwE+n09RVs43PjUtXrwYX/rSl5iz5/HxASIAdqQlH0jedtttaG1thdfrxc6dO/HII4+MG4aicazZSH1D+aUaxGAqfdCCdtrjNNuOLoUwYlqkHlt9fT0mT54Ml8vFhOtswaZVYnG5XGhpacGMGTNQW1vLtpPj574oU00kEooSFH1noWg0+OgzsViM7V5D2xmGw2EcPHiQbUai9R35LLPxhohe8zsvZcPGl+j0ej2qq6tRVVUFg8HANmUZGBhgW+NRcDTeO5udDlaehuMb3Yfy8nJUVlYq5JJK+/v378fBgwcV22wWUi61SqWEj7cniUQCAwMDbLMIfq/uSCSCUCiERCIBh8PBNtEABu0v9a1o2Z9cEv2ey+XCzJkz0dzcDI/Hw1YQCIKAUCiEgwcPoqenZ0gjF/GloaEB9fX1mDRpEtxuN1KpFKqrq9Ha2ooTJ06gu7t7zGMtesfKE91Yah4ATh00rW4vp45SmmugaKaQyzWGI0EQ8PnPfx633HILa06irbp4bLTubKJhA07twAMMGoAZM2bgxz/+MevOpOUqfMSpxlhs2IDs+Pj/SdLgYfAulwuSJOGjjz7Cww8/jBMnThQcHxlc9dIbvrFnOGz8Nni0KQHfOMN3pea7jDgcnQnf+CmYRCKBP/zhD9i8eTPr3C+0UyWe8eV4GhNvT8xmM9vIRP1Z3p7wndzqTF7twPNFzc3NWL16NVtzy+M7cuQIfvaznyGTyWTFt2DBAqxYsQJ9fX3sWNH6+nrccccdWLt2LV588cUxj7EoHau6ls6XNYBTwh+LxfDXv/4VNptNUS6lKGzZsmU4evQo1q5dO+S7CkVa2Orr6/GFL3wBc+bMUfyfMPE7xlDJbcWKFQiHw6wkFY/HEQgE4PP5sG7duiGbKBQKGzCUbxaLBYsXL8b06dNhs9lY4MAr65EjR/Diiy9i27Ztiu8qJI0WH58B0vvES9r7OJ1Oo6enh+1aU0h8vKFUd8nKsoz29nZIksQqRPQ5/uQeckC0HR5/PTB48MXf/vY3drB0vvGNF9+Itm/fjn/84x84evRowSsnI80Z8/bk5MmT2LRpE3bt2gW9Xo8lS5agoqKCnW7Df+fnPvc5tnc0/zuCIGDPnj3o7OxkB5vkA5/FYsGSJUswY8YMRTMrj49vMpMkSRMffS//erwDhaJ0rDxlAyoIAmKxGNatW6eInKlsWlNTg//7v//Dvn378OKLLyqy3GIw0sCpcdTV1WH58uUsAgNOGS8q/VLGSuXE5cuXAwDb/YVKpseOHcNrr7027tuMnS5lu8eiKMLhcODaa69FTU0NW8zOGy5ZlnH8+HH85je/QTKZLDq+AcPLJWWAfNZDlRTicSqVQl9fX8Hx8XNyfEMVz4s5c+agvb2d7RxFOuZwODR5Bwyd8yfHym++UAgaK9+AQWzvvvsufve73yEejxeNXGqVf4mIz93d3XjyySeZHVm0aBGam5uxYcMGNu9NTuqyyy5DW1sb+vr62C5LFHR0dHRg3759eV1yY7VasXTpUtTW1jKManz8Ri16vZ7he+2111hzkzqT5wMqfn/osVDROFZ1RKT1oOhElmVFhK2+nhxsKpVCc3MzHnzwQaxduxbr168f9vf4/42n8o8GF8058esF+d1w+NIaX7Kh7RljsRiSySTMZjO++tWvYs+ePXj66afZPSsUNnVUuWLFCrS1taGsrGxYbPz6RvX8V774drr4ssnl0qVLsWTJEkyfPl1xqHKh8fFrT/klCVS6pbk4ygTGIpe0i1ax6NyZ8o2w8dtTZvu9fGMDTvFuOL6psSUSCUWp9/LLL8dnP/tZVFZWsuYz+l3+93OBbaz4Zs2ahUceeYT9b/r06bBYLPje977HZLG8vFwhl/zvtre3w+Px4KWXXkJnZ+cZ4ysax6pFpPRqI8xHTnToNUUcPBPS6TRcLhc+9alPoaOjAxUVFejt7UU0Gh0i/PR7QP72myVsdrtdkVHzjkgdhfLdbyRk9MhkBjcFnzFjBpLJJNxuN5uvDQaDbIlSPrHxfJMkCa2trZg1axZrbunt7YXL5YLT6RzS2VdRUcHWPJIi9Pb2Dokm8803ytRo+QXvYGg7NfqsIAhwu91sB62uri42X1dRUYGBgYEhJap8yqVazvisjJ8fpf+diVz6fD62r3U+sUnS4MHz5FBov9toNJr1XtCzIAhoaGjARRddpNhyMhaLoa+vb8hUSyHtCcmky+UCcGpem04PIr6ZTCYEAgGIoqiQSa/Xy/BlMhlUV1fjvPPOg9/vZ7szURNaJBJBJBJhzUL5bLBLp9Po6+uDKIrs3GPqwSB8BoMBU6ZMQVlZmeKks9mzZzO5JAz0NzXXhUIh6HQ61qg2FnxF7VgBwG6346677kJFRQU7P5Uiy4GBAfzkJz9hJzYQJZNJJBIJtlYrk8ngiiuuwJw5c7B69Wrs3Lmz4I0GwClsNTU1ioiYzwJoDhU4tW1eJpNRtPqT8wROKfjUqVNx9913IxqNIhwO4+mnn8aHH36Yd2w833Q6HVsTl06nsXv3bvzyl79ke+ny2M455xw8/PDDSCQS7FjArq4u3H///WzPz0KQIAj40pe+hJkzZ8JqtbK9ZynTefjhh7F7925mVEVRxJ///Ge8/PLL0Ol08Hg8eOCBBxi+J598Ek899VRBGpcoGNXKWKlETRuXn6lcJpNJ/Pa3v8XWrVvZQvx8UW1tLZYuXco6W51OJ6LRKNasWYNAIDDkXvPBrSgO7qpE2Rxh27ZtG370ox+xfbuLoaGOZHLWrFkwm83svq9btw7r1q1j5W1qfEylUgqZlGWZBT7qihHZk8OHD+Phhx9mtibXy6W0KBAIYPXq1UOSLB4fvXfLLbcMsSla9jIUCuHBBx+E1+tl748HvqJ2rMTgY8eOIRwOs/M46+rqFEc38ftbqnfpob/NZjMqKirYwbZaSpBP5aDyk9PphM1mGxLNk2LTg49+eUOm7rKk+2AwGNgpFxSxFwKby+Vi0SUpQSKRQEdHB/bu3Yuuri52KpEsy9Dr9WhpaWFns5JjNZlMWZdo0O9VVVWxyDYYDI678ldWVqK6uhrV1dXspBa9Xs/wAVB0MZM80liIB9TV7fF42DKG4YxzruRSPadKMpZIJPD+++8DgOaGFpT9WSwWNDY2orGxUVMuOzs78eGHH6Kzs5OtgcwXNgCswhGJRPD/s/fd0XFVd/6fN71qRqNmWbaRC7LkKlkGgkMaDs2AgdAJJQQHp5FyQpYEcrIklAC7JCTZ0LKQJY4JhPDLWczaYGAhlAXcsRGWK5It26pT3/Tyfn/I3+v73rxR18yTPN9z5syb9uZ+7rfe7/3ee202GxvB8UEsAMYnei4tLUVDQ4Ms4I3FYtixYwc++ugjdHd3M1ksBN+UJAgCCxyAE9kGURTR3d3N0r/8tn6hUAiRSIQFiD6fTxULfZ8yD/wRnPkMJIhffr+fBYQkt2r4aG/gweylJPWf3sPvET0W+DTvWAOBAP7whz+wzvzqV7+Ka6+9ljldis5onRIN3+PxeFZn0mdqSxuUnZ0PbHzqjOYMCAcvOLR4mz99gk+5ETblHqH0zOPTAjav14v777+fHR/28ssvY8OGDRAEAVVVVXj00UdRVlamio3Hw+Mym80466yzYDabEY1G0dLSgk8++WRMcS1duhQXXHABSkpKZApL+AAweaTdbgaSS34JCi+n+ZBL6lOqeuWrgUOhEP7whz+ww7vJWCmLnPR6Pb7xjW/glltukbWRsL3++uuswKcQOkcbx/MBAT9lxAdAxKN0Oo1Zs2bhnnvugdlsZqnQ3t5e3Hvvveju7i4o39SI/09eJmkOkcemlMkbbrgBM2fOxLe+9S2Ew2FZsMHbE+qjQthK+h9+EJWLd9TeRCIhO2RgIHup7MOxwKdpx0rEj+Z27NiBdDrNNg8Ih8OyDuFHfbyQqM2BFDoVDECmmHzUDIAJCj3z/UBt5xerEymVLNdJOIXCxj/4Cjy9Xo9QKITnnnsOVqsV6XQaCxcuxIIFCwAAVqsVF154IQKBANtsmzbeBk7srqLk81gRKSMg72MlPjUjqyaXer0eS5YsgST1V80Gg0G89NJLbKRNo8FoNMrOvwwEAjh48OCoZTeZTGLXrl2w2+2w2WyyteDJZDLLyCqLVZQyxsvl4cOH8corr2Dbtm1ZkX++dY6Xez6drSRJkmCz2bBixQrU19ez93jjrTbaKSQ2JSllcsGCBdDr9fjnP/+JUCiEFStWwOFwsLWdJpMJ06ZNY30ybdo0LF++HAsWLGD8jEajWLduHfbu3ZsXfCaTCfPmzWMHtNOGKmazGYlEAu+9957MYRJu4h3hW7Ro0ZDtJf/5WJHmHOtARlGSJOzatQsff/yx7FgkXvDVFEetQIMfweUzZaMkXhkomiZjwI9q+IpF+h3dU4mPd1z8tnJawaaM8nm+RSIRvPDCCywguOGGGzB//nxkMhmYzWZccMEFzMGIoghRFOH3+xGNRhEIBMYNK+9YBsIHQGaMeXy8Y6Z7NTY2Yv78+QiHwzh69Chef/11RCIRNk/++c9/Xoavo6MDBw8eHDWeRCKBlpaWrJEof6assniDDxLoWs1xHjlyBM8884ysclZLOse3lSe73Y5LL70UlZWVTP74DTLoN8rsj5aw8TI3f/58LFy4EHv37kUmk2HYbDYbW+8vCALbpWj69Om46aabWCaQCr1efvllVjQ43thMJhMWL14Mj8eD8vJyOBwOtvOTKIrYunUr24yDx2yxWLLwqQU9avZyPHg3qGMVBGE6gD8DqAIgAXhSkqTfCoLgAfA8gFoAbQCukiTJN9KGKKNitQo7vtjipptuQlVVFf74xz9CFEXZGiR+32A+QlFTAJ7GS2gGwsbvlMKn5MjgKd/jfwfIFZ7mYykNlEgksG3bNrz//vs4cuSIZrBRKTyfUlRbQ5bJZPDaa6/ho48+QiwWg91ux+WXXw6DwcD2DlamvMaahzwm5SYKSnzEMx4bfd9gMGDVqlVYtGgRysrKZMsEiHc2mw2rV6+GKIoIBoOw2WxZ+MYy8zAcnVM+KwtHiJSFUISPnrWgc0psZE/mz58Pj8eTU+cIM88DrWBTk0vCcfPNNyMej+fE5na78fOf/5wV4VGwxFdD5wsbYVLTIeXSSl4e1aY1hmovxwPfUEasKQA/kiRpmyAITgBbBUF4DcDXALwhSdIDgiD8BMBPANwx4pbkIL1eD4/HIzPGBoMB8+fPR01NDYu6+IlrtYIMURTZnrNqqbpCkCT1T5xTYRUvQIIgsMXOvLGitvLXdC+q1uQLuEKhELq7u2VHz+UTm15/4txLGg3RRvq5+Mbj6ujoQFtbG1KpFJxOJz772c+yZQO0FGcgBRkLomUbfKpZqfR0XVpaisrKSlmFYiwWQywWQ1VVFaZNm5a1zzPxThAE1NXVIRqNwu/3sxE5j0+n08FqtbK9k8eLlCN0JY8sFgs8Hg+cTifjWSaTgdfrlR2UoDYaKKTOKTHR86mnnorFixez01BoqommGbxeb5ZD1RK2XDKp1+sxd+5cCIIgw8bbE7PZjKamJiaHhCnXUY3jSZLUf06sMt1LtoIPDih4MxgMKCsry4kPyLaXmUwGPp9PttRoLPEN6lglSToG4Njx65AgCLsB1AC4BMAXj3/tGQBvYYwdqyAIcLlcuOuuu9iJGdSpHo8HwWCQ7YzCj/KUlMlk8NJLL2HNmjXwer2ywoNcCpEP5QgGg3jooYfQ3NyMf/mXf5Fh0el0slNQSFiozfwIho50IkNAj0gkgvr6elRUVGD9+vU4fPhw3rHlWn8cDocH5Ruf1kqn0/D5fHj44YchSf0baixZsgSNjY2yDfr5Oc+xounTp+Pyyy9HRUWFLFKmrAi/O8/3v/99pNNpFkyYzWY899xzeP755/H4449j6tSpuP/++1FaWjoo72gemcdXWlqKL33pS9izZw/2798/Zhh54h1OLmO9ZMkS3H333azqO5PJoLe3Fz/5yU9w9OhR2bpIZZV+IXVODRvpmM1mk+ncunXr8Le//Y3NnSsDBi1hG0gmR2tP6P18YItGo1i/fj3mzJmDyy+/HMAJXpWWluJnP/sZCy7JttCjqqqK7VQ3FHyPP/44tmzZAp/PN+b4hjXHKghCLYAmAB8CqDrudAGgE/2pYrXf3Arg1uE2jMDpdDqWb7fZbOyEF+q0M844A6FQiBlvSvmWlJTAaDTC6/Vi165daG1tRU9PDyupVnag8nmI/TFibEB/cZLf78eRI0ewbds2zJ49G7W1tUwoKALjnRONSHkhoVQhLU2hRyKRQDAYlI3U842Nn7fjr2nUxo9aAflWeMrKS3KudC2KInM4/LKInp6eQbd0HA6+eDyOrq4uWK1WeDwe/h4MCxkxqmbet28fO0iBqp8DgQBMJpNs44WBeEcVxt3d3RBFES6Xi40W+Qrx0WDjSU0H+Pko3sFarVZ2IhHJpSRJbMSq5J1WdE6JbcaMGaitrWVL8UwmE0KhEHbu3Il9+/bJ1kwTBq1hU9wjSyZHYk+SyST27t2LgwcPsk0mRoNtqPgymf4tWvv6+nDgwAHU1tbCbrczbKWlpWypF+8LKIgdCr5Dhw5h3759aG9vR19fX1a2a6T4eBqyYxUEwQHgRQA/kCQpqEhlSYIgqLZCkqQnATx5/B45W6pMqyjnNmjfTpPJxDrQ6XTi3nvvle2qAvRvzp9KpRCPx/Hee+/hRz/6EeLxeFaqVC0S49syGI0FNkEQsG/fPvziF7/A6tWr0dDQwNIZFHXy2HhlpkpROuZJFEW2gwhVTO/cuRPvvvuubG4hn9iUIwTlnCRwItrm53b4nXty8S2VSiEajTLe0s4s//d//zfoiHU4+I4ePYq1a9fiwgsvxNSpU9m9SS5JJkku+/r68G//9m/o6+tjGGnuCgArDhmMdzRy3bx5M3p6erB8+XJYLJYBcQ0XGz0Pl3dms1m2fpevZB8K7wqtc/T6/PPPx6pVq9i0i9lsxq5du/DTn/6UFS8NVy7zjY3/r1wyOVx7EgqF8Je//AVbtmxhO7aNBttw8Q1X54aDb8OGDWwZGD/NMlp8PA3JsQqCYES/U10rSdL/O/52lyAI1ZIkHRMEoRpA94haoCClsFCH0NpAAsoru3ItUiqVQiAQwAsvvIDdu3cjHo+zkYFalJkvUmIjfEC/Qdq8eTMA4OKLL0Ztba2sypR+n0gkGDbacoyWndA5iXV1dWz0xo/QC4WN5jf498nJ8MuI+JGc0oip8e3IkSOyz2kUO5ZpYMKWyWTYkgOKlm02GwwGA6xWKz7zmc/gtNNOY0abisiIh/x70WgURqMRoihiy5Yt2Lp1K8LhMBKJBCKRCDMAVIDm8/mQSCTQ2trKDqMey92nhsM7m82Gq6++GvPmzWPOJp1OY926dWhpaWGbCAzGu3zRYNiIdDodq0jfs2ePbCvA4cplvrFlMhm88847OHr0KC6++GJZCpSvWM9lT5LJJCKRCLq6urBlyxZ0dnbi2LFjOHz4cNYcaz6xKXXO5XINGd+mTZuwZcsWVodBOGOxGDZv3szeHy/eDaUqWADwFIDdkiT9mvvoJQA3AXjg+PN/j1mrIFcI6hS+I/iokzqYHmSM1q5di87OzpxFLsrIj67Hm9SUXZIkbN26Fbt27UJjYyNmzJghYzpd096ehI0fiafTaTgcDpSXl7ONEvj9gQuJjTcCNGcFyNcZEm/IaBHP+QPOeV4dOXIEHR0decO2b98+7N+/X5bO5rMpzc3NAE7s5EMPHh+tERWE/t1hNm/ejL/+9a+yUZHaSESSJOzdu3dc8Q2FdxaLBddeey2qqqpYe5PJJF5++WW8++67Q+ZdoXUOkDtWQRAQiUSwdu1adHfLxwjDlct8Y8tkMnjvvfewd+9efOELX4DD4ZCtXVezldR+CspFUURHRwdee+01HDhwAAcPHtQENl7nysvL8bnPfQ42mw3JZJKlfJX2X5IkvP/++3jiiSeyeKe0l+OFbygj1s8CuAHALkEQdhx/7070O9S/CYJwC4B2AFeNuBWQg+CNbzKZhNfrZVsR2mw2WK1WNlowmUxMQajzgsEguru7EYlE2GiVBI0f9tN/qbVhLCkXNqWCE1N///vfY+3atVkFPZIkseiyu7tbFVsqlYIoiujs7MT7778Pn8+nKWz0PX57O3pfOTIoNN+Gg2/dunXYtWsXVq9ejfLyclZ0pMTX1dWFX/7yl9DpdIjH4zhy5EhWOipf+EbCu1QqhVAoBIvFAkEQ2PxwKBRiUzBa4N1g2Gpra3Hdddehrq4Ofr+fbXmYi29aksuh2MpMJgO73Z5lK8nJbtiwAa+88grDEo/HEQqFcPjwYXb4t9Z0zu/347e//S07qpAw0Tw/by/prNhC8W4oVcHvAsi1ynr5qP5d/f/YNXVId3c3Mpn+SW0SFlpzxZ9CQI5VFEV0dXXJRqpqQ37+v/IVNfPY+DVxfJn7xx9/LEtt8O3lIzASDh4bFQ35fD52CLOWsAEYMbZC8U35P2r4Dh06hGPHjuHss89m62uVGyRQSmr79u3MEGoB33B4R4EdFYdRuprwao13ubDZ7XbU19fD4XCw3dtisRicTieb86Z2a1UuR2IriT766CO8/fbbWdi0IpNq+GgPa36+X1kcyf+ukLwT8tVJwMAT1orvAThhgEvridBtAAAgAElEQVRKSmQLn/klAMo0B0UgtGm0Mv3Lzy/wz0MlSZJUg4yRYFNWXPLPdM39bxZGXnDoPUHoPz4pk8nkPB5romJTfncssI01PjoSLhgMqrY53/jGmnfl5eW47777UFpaCgAsNfrwww9j586dEwZbQ0MDVq1aBbvdzrZy1Ol0EEURLS0tLI1I7Z0IfBuOrQyHw7LtYCeyzmnRpmhuS0OgHyCNQmkExncq34l8tR//e/6RKzrJZ1DBt42w0TW9ppTHaLBRtDoZsRWSb/S/g+Hzer0AJh6+ofIuEolg27ZtcDgcAE5UAXu9XtnuV1rHRulrmmc0m82QJAmdnZ04evQoG7nR7ycC3yabraT/nYg2RZMjVsVvsq7V3gOyO0et00aLd7QRpuI3WddFbPnFdrwtkxbfWGPjDbay/WoGS3k9EhoPbKeccgouueQStrbTaDQiFArhmWeeQSgUkmHh2iF7Vl6PhIo6N3SaSPg0OWLliSITulb7fLDfD/W7+aYitoF/P9TvFoImM76BsA2lrVrGZjAYMHv2bFRWViIajbIj//R6PcLhMCtyyUVaxjaZZRKYWPg071gBeScoI+Xh/l5rVMQ2tN9rkSYzvsmKzWg0Yu7cubDZbIhEIrK18JFIRFY5nIu0ig2YvHwjmij4NJ8K1hqNZepGa3QyYgMmN74iNjnpdDqUl5dnnZQC9NcndHd3DzhiHWs6GfkGnAT4io51eHQyKsJkxgZMbnxFbNqmkxEbMPnx5TsV3AsgfPx5IlA55G09ZYDvFrFph4aDDQBEAHvGrzljSkpswMnLuyI27dBwdW4i4RuuzuV3xAoAgiBskSRpaV7/dIQ03LYWsWmDithG/5tCUZF3I/9+IWkyy+VI2qkb/CtFKlKRilSkIhVpqFR0rEUqUpGKVKQijSEVwrE+WYD/HCkNt61FbNqgIrbR/6ZQVOTdyL9fSJrMcjnsdo5qjlUQhPMB/BaAHsB/SpL0wIhvVqQiFalIRSrSJKARO1ZBEPQA9gI4B0AHgM0ArpUk6ZOxa16RilSkIhWpSBOLRrPc5nQA+yVJOggAgiA8B+ASADkd62Reu1TEpm06WdfUFbFpm05GbMDkxzcax1oD4DD3ugPAGcovCYJwK4BbR/E/mqUitolLkxlfEdvEpMmMDZj8+HgaTSr4CgDnS5K06vjrGwCcIUnSdwf4zaSNUorYtE0na/RcxKZtOhmxAZMf32hGrEcATOdeTzv+XsFJeS6f1jeWHg4VsU1cmsz4itgmJk1mbEDh8I3GsW4GcKogCDPR71CvAXDdmLRqCKR2qK3ae/z7IzkCqxBUxCZ/f6JgAyY3viI2+ftFbNogLeIbsWOVJCklCMJ3AbyK/uU2T0uS1DJmLctBagfbGo1GOBwO2UkVkiQhGAzKjoHijxmis/20JDC5Du3lr51OJ0wmEyRJQjKZRCgUYt+Z6NhyRZdaxwbI267T6eB0OqHT6ZhMTja5PJl0bqLK5WTGBmgbn+ZPt1HrJN5YCYKAuro63HjjjTCZTOw4qGAwiEcffRR+v58peq4HANn1QDSWcyJDwcY/dDodvv71r6Ourg4AsGfPHvzpT39COp2e8NjUHFA++DYe+EpKSnDzzTfD7XbDYrHAaDQyuQyFQvjDH/4w4eXyZNG5QsnlZMZ2MuDT9EHnfOfRM13TaECn08Fut2P69Okwm80wGo0AAJ/Px15TZ2YyGdk1PSspH8HGULHxz3q9HlOmTEFtbS0AwO/3w2g0QqfTTXhshI8iRyUOrWAbCj6j0YgpU6agvLwcNpsNRqORyWU4HMbpp5+OcDiMdDqNjo4OdHR0aAbfaHSOsB09ehStra2Mb1rCZjAYMHXqVBiNRhgMBni9Xni93kHl0mQyYd68eTAajROab5NV57SGT7OOle845aiNOkyn00Gv16OkpAQzZ86E2WyGyWSCIAjo7e2F0+lELBZDOp1mHUnXqVQKkiSx0V4+hWY42PjXBoMB06ZNw5w5cyBJEnp7e2G1WpFKpSY8Nv49UgKt8W2o+CwWC2pqajBlyhQ4HA4YjUYml4IgYOHChchkMkgmk3jmmWfwl7/8RRP4RqtzhO3DDz/EXXfdpUm5tNlsOP/881FaWgq73Y533nkHb7/99qByWVFRgbvvvhsej2dC822y6pzW8GnSsSqjEz4SoYfBYGAdZ7VaZWk3QRCQTCZhsVhgMpmQTqdZJwqCoBqp8OkCLWHjnw0GA5xOJ1wuF4D++Vaz2cwwaQmbxWLBaaedBrvdzvhgMpkYj6xWKwwGA8xmM/R6PcMciUTw4osvQhRFTfFNiQ/I5p1er8fy5ctx6qmnorq6Gi6XCw6HAyaTicklKTlh+/znPw+bzYYNGzbg0KFDmuCdGrah6BxRSUmJpuSypqYG1dXVsFgssFqtKC0thdPphNPpxJIlS9hnA8mlzWZDTU0NzGbzhOSbw+HAJZdcwngzWXRuIHvJY7/00kths9mQTCaRSqWQSqUQiUSQTCYRDodlz7FYDB999BH6+vpG3G7NOdZcQ36lATMYDOzZarXC5XLBYrGwTo7H47BYLDCbzUilUkxgALCIhYwcER+pjIfQjAQbLygmk4k51kwmw4w2AM1hs1gsOOuss1BeXg6XywWbzQabzQaXywWz2cwUnEZ0hLW7uxtvv/02iyTT6TRSqRQEQZApfD6xqeFT8k6v18NsNmP58uU4/fTTZfiIn3zkDQCpVArLli1DY2MjWltb0dnZKYuc84VvrHSO2qoVuSQMNTU1aG5uht1uh9lshtPphMVigdPpRFNTEz772c8OKpd8Wyca30wmEzweD6677jpUV1cPWef0ej3S6TTTPXrOB7bh4MtlL8mxejwe3HzzzSgvL0cqlUIsFkM8HkcgEEA0GoXP50MkEoHf74coiggGg+jo6IDP55MV4g2HNOVYlR2oHOrzHUgFISaTCVarlTlRvV4PSZLYZ/QeOVadTscUQKkI/OS1VrCpCRAvNJSG0xo2vV4Pu90Op9OJkpIS2Gw29poMF/GH8EqSBI/Hg3vvvRfxeJylS+PxOB577DG0tLTkHVsufErenX322fjyl7+MhQsXwul0MnwWiwWvvvoqNm7cCIPBALfbje9///soKSkBAJjNZgDAN77xDZx99tl45JFH4PP5NC+XajonSZKm5LK8vBzNzc2oqKiAxWKBzWZjDtVisQxLLgkbtXOi8M1kMuGWW27B4sWLMXXqVNhstiHpHI3gEokEgsEg4vE4gsEg3nnnHbz//vua0LnB7KUgCLLsAxXZUTYlkUjInuPxOFKpFJLJJL7whS9g7ty5eP311xGJRIbdfk05VkA9n64c9tODOjadTqOvrw9utxslJSWQpP7y6fLyciSTSfT29rL7U6RFSqIcRfDtGK8IejjY6DPl76lter2eYdISNgCIRCIQRZHNO9J8nMFgQCgUYqNwUhaXywWTyYSmpiZ230QigXg8jueff559L9/Y1PApeVdWVoba2lqUlJQww0x8DAQCaGtrQygUQmlpKRKJBIATvDMYDKivr4fb7UZ1dTUMBgPi8ThEUYQoiuOObyRySYaKDJ7S0BZKLsmICoIAl8uFadOmsfQuFZHRtITJZEIqlUIgEEAmk2FpYn40lwtbOp2GwWBAdXU1kskkKyLUoj2ZMmUKTjnlFJbuVmJT0zlayhePx+H3+xGJROD1enH48GHs3r0bwWCQyXG+dE6v1zP+EB/pmoI53qmSYy0vL2f3IbnknTL/SKVSEEURNpsNpaWlWTIwVNKMY1UKY64hv1LJ9Xo9WlpasGrVKlx//fW49tprkUqlYLPZ8Mtf/hJbt27F/fffz9JQOl1/Ba1SyekxntHlSLBRm+g5Ho8jFotBkiQm2HRPLWETRRFPP/00jEYjzGYzrrnmGlx99dWw2+0IBoP4+c9/Dr/fz9qp1+tx5513oqmpSfYeANZPhDFf2AbCx/POaDTizTffxPbt23H33Xdj6dKlzNACwMqVK/GlL30J9957Lw4fPsxSUXx2xWg0ory8HP/6r/+KcDgMv9+PdevWYf369ZqUS+INZYKoUKmQcikIAhobG1FZWckcJxlgs9kMq9UKs9nMRq9OpxMbNmzAq6++CrPZjMrKSvzmN7+BzWbLiY2XSwB48skn8eGHH0IURZlj1Yo90el0eOqpp7Bx48ZhYSOZpMCPHM+yZcswZ84crFmzBvv37x9zbAPhc7lcuO2221BZWQmPx8Oml+x2O7MzFFAAYBkSQRBgtVpVdS6Tycgc67Zt2/Dyyy+zedhoNDoiDJpxrGqUKx2gHLnFYjFEIhEEAgE2nJckiaV6+NLqgQRdLY1TaGzKKrVkMskMF82HaBGbJEkIhUIsRZNIJGTOpq+vD729vQybwWBgqScAw4oU84kNUJ/zKS8vx6xZs+BwOJgDoTmrrq4udHR0IBgMIp1OswIKwkdtpvkgi8UCnU4Hq9Wad3xDlUsyypTaJZ0DCiuXZrOZpTv5IIAekiRh3759MBgMcLlcaGtrg8/nY4aVrxSl9vPYlHIZDAbh9XrZ3ON4YhuIcvFNp9Nh+vTpmDlzJhutDQUbvae8F6XQyXnlAxu1Q6/Xw+PxoKKiAmVlZbDb7bLiSCqio0COx0dyqsTHyzfV5gSDQfa7STHHSqSW4lCLBDOZjCw6JudKnajX6xGNRln0AUA2x0MdPJjyawEbtTccDiMYDE44bBRRknNNpVIyfEpsvOLygVGhsA2G79xzz8WqVatY1Mw7nJdeegnPPPMMgP55v0gkohoJK40iYS00NjW5jMfjCIfDzGhpRef4/uNH2DSCi8Vi+POf/wxRFFkKkRwuLcFIJBKywIHHpjW5HIxver0et9xyC84880zodLohYyPinSo/Ks4XKfFZrVY2v08Psim8zikDv1z4xkvnNOlYidQEhYgHX11djc997nM49dRTZRPNNP+q7Cg+ElEqQb4VYjBs1NaFCxdiwYIFKCsrQyKRmHDY6MFXHpJhorYlEgmGDQBL46gt5i4UNiW+adOm4bzzzkNTU1NWpExOKBqNIpFIsICCHoSPd1r8+rrZs2fjnHPOwZYtW9Dd3Z13bAPJJRW3AJCN1gopl5Ikoa2tDX19fcyhmkwmzJ07F3V1dbI5et4Z8u2jqRZyQEpshFdrcqnGt+bmZpx++umoqalhstjR0YGNGzcyGSOivjEajWhubmZTMvQ95XM+sSnx8ZW/AFR1bjDeKXXu6NGj+J//+R/s3r2b/WY0+DTtWAF5vp1XdF4oKioqcMUVVwDoH7XyUZVaFeJgKap8KgN/rYaN2ltfX4+vfOUrLOoEJhY24ESEn0wmZevlqF3kWOk3pASERyvYqH0AMHXqVFx//fWw2+0ATjiZeDyOZDKJaDSKWCyGVCrFomqlY6X3lYvXZ86cCY/Hg08//RTd3d2akstEIsEcK82fakHn2tvbZRgEQYDD4WCbqig/U8pmPB5nPCN+KAsItSqXPC69Xo8lS5bgxhtvBAC2PnP//v14+umnWZv5alu+PxYsWCCTR96p5mOpzUD4+P+WpP4908mx0nIaaivhot+r6VwqlcKRI0fwj3/8A8lkMus/RkKadqzUIXzxCnBi02TghELQiIB+R9+h3ypz5cq0TSHSikPBxreNXwc40bC9+uqr+OSTTwD0G2XlfrJ8u5WpmYHSbfnGpsTHR858GioWi2HPnj1Ys2YNjhw5wowYX5DF4yMFj8fjLMCguVjekOUT22TRuZ07d6KjowMWiwXAieBbiS2dTiMajcJsNmcVYGldLnm+1dfXY9WqVZg1axaTSZ/Ph9///vdob2+XOUe+ipheb9y4ES0tLbjuuuswc+bMLJlMJpN5lUnCFwqF8Pjjj7NlU5TeB/o3Jfna174Gh8OhWjynxrt0Og2v14uHH34Yn376ac6sw0hIs45Vbd6AJxJ02kWFj0bV8uZqVMhUIj3nwqbWJj6F4fP5EAwGc/6H1rAdOXIEx44dY9/jFdNut7OCE94wU9pOSYXCBpzAR4UUtB4V6Mfk9XrZiKe9vR3bt2+XjeAymQzb45kvTqIKRVL4dDqNSCQCn8+XNdc+3tiGIpcU6CmLm7Soc16vF36/X7a2k6/spbbwgVEubEq5dLlc8Hg86OrqYnPK+cQGZPPN5XKhubkZVquVpXNjsRh27NiBvr6+LPtCRXM0uksmk2hvb0ckEpGlgPk52XwS4UulUmhtbWUVvXxAUFpainPPPRcul4uNOvmq/erqahnvyInG43Hs2rULXV1dOe3uSEgzjpUcpVoKkSfeubhcLvz0pz9FZWVl1noknU7HSuuVEbRylKRFbMr2GY1GVlbu9/vx4IMPoqurCwAmPLYVK1bg8ssvh8fjgdlsZmtALRaLbMSWb2z0P2r4XC4X7rzzTkyfPp1FzZlMBo899hi2bt0qS1HxhjkUCuGBBx6QjZYA4LbbbkNDQwMbGaRSKXzwwQd47bXXstayjjc2JanxDgBbfD9ZdI6fM1WucSRsvFwCwOrVq3HBBRfgjjvukDmtQmIjWaPvEjZ6zePW6XQoLS3F/fffzzbS4AvPKDNBMqmWDs43Pv494p3f78c999zDCtHoc6PRiIqKCjzwwAMoLS2V4aOAYTzkUjOONRflyqtT55eVlcHtdrNIlC+7JqUf6B70uhA0WLsAwO12Y+7cuaitrWUVcCaTCcFgUNXgTkRsDQ0N7MQR4hsVn1D6W+0ehcIG9AczHo8HLpdLZsQCgQC8Xq+sbXyaDQACgQAbSZCBol1veEcUi8XY+ab5pKHwjt/ZbDLpHI1ylPYklUph165dSKfTbAQ0ZcoUOJ1OZn+0hI2/5vHxo1tAfhpTVVUVTCYTS/f6fD5Eo1GZTPb19bHRbL5psAxKIBDI+i6/PzllKkif9u7di/379yMej4857zTvWHni8+N0TREkPSiqpIXCVqtVZpiVEXQhjTNPath0Oh0aGhpw3333sfVaBoMBqVQqa5nAZMFGfOOj7kQikYWr0Nj4hfhqaWt+7hEA20uY3/SDHyXxqbaRrp0bD8rFOzoQglL4k0XnctmTvr4+PPLII+ju7kYqlcLNN9+MG2+8UcY7rWAThOzj0iRJypo3J5m0WCxwOByw2+2yAjRlBb8kSdi+fTvWr1+vum43n0QYqBgJyK1zavgSiQTWrFmDd999l224M+lHrMo5HmXajDqHDBvtXapMQ5GA8fcYaP4nHzRUbPQdg8EAu93O1m5RhMkryGTCpjZHpwVjBZxIsZ111lmYM2cObDabqsPg02zAiQIRvtBJeU9AngLLNy+HyjubzYaLLroI9fX1rIhEybuZM2fi29/+Nt577z188MEHE0YuB7IndOYsBQpbtmxBIpFAc3NzQeVzMGzKqQiyh2eccQbOPPNMFiCVlJTI5p15TIIgoKenB6+//jr27duXV7zDtSlqOqfcLWzr1q1477332KlE40GadKw85VJKfmLaaDTKIky+83lDphUHRJSrHSQkhI+OuyJstCemWupnomCjNKISG3BCafiRTiGcjRoJgoBly5ZhyZIlrPgIQFY7+TJ/fl9dfitAup/ScJCByOdCfJ4G4p3D4cDll1+OqVOnyjbi53k3c+ZM3HrrrYjH4/jwww8HvGe+aTC5JB7x+9BSEMjr3LZt27B161ZUVVWhpqZGNWjKN+VK/9JnNG8MAMuWLcN3vvOdAXWOd87d3d3YsGGDrEAr3zQUe6mmc5RJoTTw9u3b8ac//QnxeHzc5FIzjpU3MLkevOG68cYbsWDBApSWlsr2xQQgS8uQAVMTNOWD/2wsI5nhYONTNvyuMTw2fkuyiYjN7Xbje9/7HmbPns2CBMLGp0jT6TRbsE8KnU9suf6P2khHa8XjcdmuLrwD5X9H/OS3kVu+fDm++MUvorKyUma0tMo75f7BA/GOx5nr/7SETRRF/PrXv2ZzqzRSpc36aW9r4IQjSqfTsFqt+OY3v4mWlhY899xz7L6FwiZJEquMJWdChZ5Af9Zh1qxZrP25dI7mWR9//HEcOnRI9t/jhW0o+Aayl8rf8zrH7zo13nKpGceqRkqQPFVUVKCmpobNxxFJkgSv14t4PA63251zvkrt3vQ6H6mOgbDxbVG2i69ko9dDubeWsJnNZixatAhTp05l7/HzjXSdSqUQDAbR1dUl2zii0Nj49vJzUco5Hmorv2wD6B8VGI1GuN1uzJkzB0uWLEEgEEAsFgMAWeFIIfANxDu175DO0VwV9UcoFBr03oXGZrPZ2P7Oer0enZ2dzCCTwaail5KSEjgcDiSTSQQCAYiiCL/fD7/fj8rKSnR1deXU23xii8fj6OrqgsvlYksRjUYjFi1axM6jNZlMOXWOr5qNx+NobW1FT09PljPKFzb6Pzrdhg/q+MyOKIrM4ZLOud1ulJWVAZAPSpT3Hmu51LRjBbIrv2gU+sQTT2Dq1Km47777UFVVxSK0VCqFX//612hra8M999yDaDQqW4ulpSIKNWxE/LZpdF4gKQEJB68QEwkb8ZDOPgRObDpAOzMRpv/+7//Gs88+i97eXk1ho3YKQv+6P4qW+c27lQVN9H1JkjBv3jzcfvvtbON34ISCt7W14Xe/+924LbMZCj56HgrvSOe2bdvG+EbHjmldLs8991xcdtllzEBTVTMdUG8wGNh3E4kE079nn30Wzz//PJ566imWtaDAotDYdu/ejR/+8Ie44oorGDYAQ9Y52hkNkC/lKzQ5nU7cfvvtqKiogNVqlU2v+Hw+/OpXv5JlFXQ6Hb797W9j6dKlMJvNrMI5H8WQmnasyrQLRRqCICAYDMJsNsu2x6NIpa+vDz09PaoLtgfqyHwq/kDYqEqRT6mR4SbDlmsuZCJgi8Vi2LZtG2bNmoWmpqasUSBttLB7927s3bsXvb29bE1oobGp/S9fIcm/puiZ5yUZKr1ej7KyMrbbEp+GorQjya+WeMdXLyt1rrOzk8klb5y1LJd9fX04ePAgdLr+k1sWLVoEh8OR5Vj5gDadTrNTsyh4IKerDEIKgS0ej6Onpwd79uzBpk2bZPOMJpMJNpuNYZs7dy5KSkpkTpbavW/fPhw8eFB1XjXfOidJ/Slfl8uF0tLSLMfKV9fz6WKHwwGXy4VUKsVsypEjRwbdZWm0+DTvWPnOotf8PAJFYLFYjKWF6fQNXlCU+14OFLHkQ2AGwyYIAlNYWmdF83i0zoxX9ImErbe3F7/61a9w5pln4qGHHkI6nc46hqq1tRV33HEHM1hawkYPwsgfHEC8ISdKo1aer8CJ8zDpPT6tRd/VIu8G0jlK1/P30BrvlNjeeOMNvPnmm9Dr9aioqMDvfvc7mM1mhk0pl8olKBMFGy9j9NpkMuHBBx/EZz7zGRk2au+zzz6LDz74QHWEl09sPD6y5aRztOSQRtrJZFKmc7QNY75tiqYday4SBAFf/OIXMWfOHJjNZmakKMKik0D4TgOyo5BCjHKGQnx7lQYq12T6RMOmXLdJ2MLhMNatW4c9e/bIirS0ho13rrzzyaWoavOWymIJ3pFpkXh5pMdAW0/Sb7TGO574/g6FQnjhhRfgcDhgNptx2mmnYenSpVnzbXz2aKJgUwZrer1etbBTr9dj69at+PDDD9HR0SGzRVog5RQYnxHi8TU1NeG0005DTU0NRFHMu03RnGMdqHBCkk5UJn7hC19Ac3Mz2xUlnU6jtbUVGzduRE9PD9twGziRzlJzsGpRynjRYNj4a37Uym8IAcjxKAV/ImADTqw/U2ITRRF/+9vfZKe5FBoboI6Pd640IuC/y3/Or6smOSaHxI9S+TMktcg75ahNbYnJRJVLURTx4osvykZ2zc3NWd9XOtqJgI3sCc9DZXtp5Ld9+3asWbOGjV61pHP8iTR8u5QOc/HixbjpppsgCAK6u7vzblMGdayCIEwH8GcAVQAkAE9KkvRbQRA8AJ4HUAugDcBVkiT5RtoQZeSuVqUlCALOPvtsLF++HKeeeiozyEajEXq9HsFgEIcOHUIqlYLT6WTv88qv1qH8Z+MhNEPFRgaWf6Z0FL9GCzixAJof3UwUbC6XC7fddhtqa2tZxaUWseXCp7bwnGTt5ptvxpEjR/DHP/4RoijKlqisWrUKc+fOhcFgYAvy+bkhv9+P//iP/2AnkIw3vpHwjrAQXn6ey2AwsHYXmnej0TllypSID2wHcq4TFdvu3bvxxBNP4NNPPy0YtoHwhUIhPPbYY2wHM37qJJ1OM30ju8lnUvJtU4YyYk0B+JEkSdsEQXAC2CoIwmsAvgbgDUmSHhAE4ScAfgLgjhG3ZADiO7mmpgbNzc1MMIxGI3M8dPiycmciIHdkks8ITI14bPSspgT8Ic0THZvFYkFjYyOqqqpk2Hw+H7xeb06nUmhsFouFLVVQ8oee586di8rKStTU1CAQCMiCo0WLFqGxsVE2L8SPFGKxGFpaWmQV0IUiNd6VlpaioqICJpOJ6Zxy/k5tpMRfa1kueUOt1+sRjUbR29uLkpISmM1mVXz0PNGw0R7HFouFfR4IBLB58+asvXO1gi2ZTKK1tTVnsMDjo8/4bBFRPuRyUMcqSdIxAMeOX4cEQdgNoAbAJQC+ePxrzwB4C+PgWHkBoQXbfEUYf+KE1WqVFRsQKZel8PN6uTo1HwKkxKZmqM1mM+x2u2wDaVIGaudEw0ZbGdIewTQSePLJJ7F582b4/X5NYjvrrLNwzjnnoLq6mgV1RqNRdsKLXq+H1WrFww8/DEGQHyhQUlLC9nomXHQwczQaRTQaZe9rjXcGgwHf+9730NzcjKqqKrYjGPEu1zFsWuHdQNiUOkfGef369Xj33Xdx9913o6mpScY3PtMwEbFdeeWV+OpXvyqTSUDbtnI4+MxmM6xWa8Hs5bDmWAVBqAXQBOBDAFXHnS4AdKI/VTxmxEcU3P/L0m609ZhaulTZUbwy5Fqqovy/8aJc2JTRJVoLJOoAACAASURBVI+RRuGpVEo2V6KsTtQyNp1Oh/nz56O2tpYFCwaDAUeOHMHhw4dx6NAh9PX15azkLjQ2k8nEDBHhIqfDO1a9Xi87cYnSUnwlMDlVqmTcu3cvDh48yEYLWuSdx+NBVVUVC2b55SiAXOe0xjv6D6PRiAULFsBiscBkMuHo0aPo7OzMSpEKgoDKykrU1tbC4XAwnRtKVXChsA3FnhgMBthsNng8HlRXV7PAbtu2bdi9e3cWzwqNjf5H6ewGw0eDLL5KOp9yOWTHKgiCA8CLAH4gSVJQMbSWBEFQbYUgCLcCuHWw+/NgJCl7SzB6TSNWcqQ0WqBtyPhqN36im5RBeQ7fQB07hD4ZU2zK+TsaDdlstqzCJR7XRMGm1+uxevVqLFu2DFarlfHtzTffxBNPPMFGBOONbTT4+J1byKnS0WnkcJRySX1AOytlMhm2XCUSiSAUCuEvf/kLtmzZwpYGaI13NPqm02x4bLzx0rpcOhwO/OAHP0B1dTWcTifWrFmDtWvXynSOvnvxxRdj9erV7CxSnm/89nhawXb8HgPaE7vdjpqaGng8HphMJmQyGQQCAdxzzz04evSo7NxVrehcLnzKWgc1fKRz+bApPA3JsQqCYES/U10rSdL/O/52lyAI1ZIkHRMEoRpAt9pvJUl6EsCTx+8zaCt5YPTgDRm95iMVAKyDqNMSiQRLr9HaO37HIrWS6+HSeGDj3+dTFfR7WtfKY5oI2Jqbm3HaaafhlFNOke0xS8aK1n7yI4LxwjZSfGRUY7EYdDod23GJFPP4vbLkkn5Pa+oikQgSiQRCoRC2bNmCLVu24PDhw1kbf+QT21B4N2PGjCxsmzZtwqZNm3Dw4EEmk+PJu9FiA+RriJcsWQKbzcaCcsoMEe5MJiPjW1tbG9avX4/NmzdrDttQ7ElVVRWuuOIKNDQ0sP1z4/G4qk3Rgs4NhI/8gBLflVdeifr6ehm+8baXShpKVbAA4CkAuyVJ+jX30UsAbgLwwPHn/x6zVkG9U3nwfOTCdywZ6GQyiWg0yjaT5iMVtahktBHKWGHjAwd+HoeuaSE+OSPCq1VsQL8SNDU14Wtf+5psvoN3qoRDkiTGK61ho7RZPB5n29iRYyX+qMklPWikE4lEEIvFWLHIc889J1vaoBXe0aOxsTGLd4Ttww8/xGOPPaZ53vH/T/qTTqfR2NiIz3zmM+w8YCpMo3qGZDLJdC4SieDAgQN4+umnZUGElrANZk8qKyvxla98BYIgyLBp1Z6MBN9ll102KD4+uBoPfEMZsX4WwA0AdgmCsOP4e3ei36H+TRCEWwC0A7hqxK2AHATfUbxxBoBIJAK/38+25aJ0lCAIEEUR8Xgc6XQakUgE3d3d8Hq9rEOVw376L7U2jCUNFRvPVGor4aWRXDAYRHd3NyKRCIvEyLBrEVttbS2uu+461NXVZfGttbUVTz31FNra2hjf+BFrobEp7x2NRuHz+dg1bW0nSRKb1+Hx8Wt1k8kknnjiCXR0dOCqq67CsWPHsHbtWnR0dMiMmJZ4N1yd0xLvcmFLJpPwer0sDUrnAathoyAhGAyyDEPRnowvtsHw0bXW8Q2lKvhdALlWIi8f1b+r/x+7zmQysrVHtNavo6MDlZWVsFqtbGNzIqfTCb/fj1gshqNHj6Knp0e18kv5X/mKLAfCxn+H0lHJZBKiKDJjFQqFEAqFmAHTKja9Xg+73Y6KigrU19fD4XAgHA4jGAwik8nAbDZjz549+Oc//8nazo96lCP1QmKj/4lEIujr60MymYTFYkEsFoPFYkEkEmEGmirW6YxSwpNIJLB161YcPHgQp59+Ojo6OrBt2zbVnWAKzbtcOsdjIyJHo1XeKbGlUil0d3cjk8lk8c1kMqG8vJzVM5ADDYVCiMViOHbsWNGe5AlbLny0KQnhA/rnzalC3WKxQBRFlt3r7OxER0cHmxPPFz4hX50EDC2vfvx7AMDWH/HVX3a7HU6nE6tXr8a8efPYwb0AEAwGEQgE8Mc//hF79+6VHfHEpw2AkVd+SZKkGmSMBTb+ma4bGxtx++23M8cjiiL6+vrw0EMPwefzydIZWsLmcDhw1VVXobKyElOmTGHzWGvWrMH+/ftZqoZ4Q+0lHLyjHU9sw8FHRUp8Wb9ynTG/nk5Z4k8b6080uaSlUWrYwuEwwuFwQXg3Emw6nY5tzqHkm8fjwY9//GO4XC4AYM5GFEX4fD48+uij6OvrmzB806o9GUt8BoMBt956K+bNm8cyDiUlJSxwePLJJ9HS0gK/35+V/h1PfJrb0hAAG/JTB1BnSpKEUCiESCSCjz/+GOFwWLZ+juYGRFFEIpFAX1+fTNmVHZjPoGIo2CjNQakcQRDQ19eHTZs2MUVIJBLs7E61YhetYEun0+jp6UEsFkNvby9bdtLe3o5jx47Jsgz87/mHlrAB/edc0hF+gLzkn1d4+kxJhGWiyWUoFGK72gADY9Mi75Ry6ff7VfkWiUSwZcsWOBwOACeKnEjnuru72WhIi9iGYk+i0Si8Xi+k49mFaDSKYDAoW0KkFWxDwUe4KDiiU2zIsfb09Mg2XMkXPk2OWBW/ybpWKgWQPZRX6zzl9UhotBGm4jdZ14O9d7wNWRjp/dHQWGPj+cNj4JWCXivakfX+eGE73rZx493x/1a2Jet9rfFOeX0yYONlVg3XRNA55bXyvTlz5uDqq68GcKJ4MBAI4Nlnn0UoFJpwOqfT6XDNNddgzpw5srllSvs///zz+PTTT/NuUzQ5YuWJN8Ij6ZSx7MixplzY+M8H+/1Qv5tvUhPkgQxyrt8P5buFoMnOu5MR21DaOlGx0Xu9vb1466232Ot0Oq16SLvWsAHq+CRJws6dO3H48OEs+5JOp+Hz+cbFqQ5Gmh+xqtxj2L8ZS4xjGWGq3GMk7Rnt3/L3OumwAZMbXxHbwFTEltWe0f4tf6+TUueACTBiVZIWI6mxoiK2iUuTGV8R28SkyYwN0Da+7MMUi1SkIhWpSEUq0ogp3yPWXgDh488Tgcohb+spA3y3iE07NBxsACAC2DN+zRlTUmIDTl7eFbFph4arcxMJ33B1Lr9zrAAgCMIWSZKW5vVPR0jDbWsRmzaoiG30vykUFXk38u8XkiazXI6kncVUcJGKVKQiFalIY0hFx1qkIhWpSEUq0hhSIRzrkwX4z5HScNtaxKYNKmIb/W8KRUXejfz7haTJLJfDbueo5lgFQTgfwG8B6AH8pyRJD4z4ZkUqUpGKVKQiTQIasWMVBEEPYC+AcwB0ANgM4FpJkj4Zu+YVqUhFKlKRijSxaDSp4NMB7Jck6aAkSQkAzwG4ZGyaVaQiFalIRSrSxKTRrGOtAXCYe90B4IyBfjAW21gVmsZzC7JC08mIDZjc+IrYtE0nIzZg8uMb9w0iBEG4FcCt4/0/haAitolLkxlfEdvEpMmMDZj8+HgazRzrmQDuliTpvOOvfwoAkiT9aoDfTNoopYhN23SyRs9FbNqmkxEbMPnxjWbEuhnAqYIgzARwBMA1AK4bxf3GjNTOL50sVMQ2cWky4ytim5g0mbEBhcM3YscqSVJKEITvAngV/cttnpYkqWXMWjYIqR0ZlOsYodGcv1gIKmKTvz9RsAGTG18Rm/z9IjZtkBbxTejzWIdyDagfcKt2+O1QKF/nJxax5Qfb8f+dtPhGg81gMMBisUAQhEEf1OZgMIhMJqN5bNw9hnV9vD2ya0EQYLPZIAgCMpkMEokEEonEkP4/H9jsdjt0Oh3C4bDssHD+O1x7ZNdKbPQ+PZQHpCvudVLqHDABzmNV66ShKDqv7KTouR70vQIcSFDENgGxTXZ81MYpU6bg7LPPhtlsZk7WaDTCarXKXuv1egBAMBjEo48+Cr/fr3ls/PVo+Wa323HppZfCYrEgGo1ix44d+OijjzSBTafT4YILLkB5eTmef/55hMPhUWFLJpPsEQ6H8fbbbyMWixUMn1Z1TtOOle88euYFRhCErGdBEKDX6yEIAusg6sxMJiO7pmcl5UMhitgmJrbR4jOZTJg3bx6MRiPS6TTS6TRSqZTsEQqF0N7enoUn37wzmUwoKyuDxWKB2WyGzWaD0WiEzWaDyWRir41GIwDA5/PBbDbDaDRqkndjLZeSJGHGjBkoLy/HlClTYDQaEQ6H2QhPC9h0Oh08Hg+mTp2KpqYmxGIxGI1GhotwUjuVMmkymWTY4vE4EokE4vE467d80FjoXCQSQWtrK5PJ8ZRLzTpWvuP4yIM6jYSChJ5e8++R8KfTadaRdJ1Kpdhn+Vb2IraJiW0s8FVUVODuu++Gx+NBMplEPB5HLBZDIBBALBZDMBhES0sLnnjiCYY5X/iU2EwmEzweD+x2OywWC5xOJ0wmE0pKSmA2m+FwOGA0GmEymSAIAnp7e+F0OhGLxTTHu/GQSwC46qqrUF9fD1EUEY1GYbFYshxrIbHp9XqUl5ejrq4OS5YsYXwzmUwwGo3MMRIeNZnksUUiEUSjUej1eiQSCfZfE0HnDhw4gLvuugupVGrc5VKTjlUZnfCRCD0MBgPrOKvVioqKCsyfPx8NDQ3Q6XSIRCJ48cUXIYoii8IymQwEQWARSllZGZqamticSDQaRSqVQjKZRCAQwIEDB8ZcYIaLjX+mz0iQSTjUsPHPfEQ6njSZsY0VPovFArfbDbfbjXQ6jVgshng8Dp1Oh1gsBkEQUFtbiwsvvBCtra3Ys2dPXvCpYTMYDCgpKYHdbofVaoXT6YTZbJY5VjLQgiAgmUzCYrHAZDJpinfjIZeLFy9GY2MjGhoa4Ha7IQgCG6lTf2gBm8FggMPhgNvtzsk3IuJZLBZDLBaTySRha2trwyeffIJEIoFYLIZkMllQfAPxzmAw4KKLLsLcuXNRU1MDq9WK7373u/jggw+wefPmcZVLzTnWXEN+vjP1ej0MBgMb5peUlKC2thbnnXceVq5cCZ1Oh+7ubrz11ltIJpNIpVJMaIAT0dnUqVOxYsUKRCIRiKKIYDCIeDwOURRx6NAhHDhwYEzwEIPUoi0+6iKBoHkrEnxSbMJMfUPRFqVu9Ho90uk0BEFgz7yDIhoPZR8u35TKwCsICbka30jweQx8hDmeo4LR4jObzbDb7SgpKYHb7UYqlYLZbGZptWg0ikwmA4PBgBUrViCdTmPfvn3jji8XNpPJBIfDAYfDAZvNBpfLleVYjUYjwxqPx1naWCu8G2u5pDafccYZuOGGGxAIBGR8i8fjMJlMsu8XGpuaY+X5RpgAMJmkorVoNIpEIsH429XVhU2bNsnS4eNFo+GdwWCAyWTCpZdeijPPPBOZTAZVVVU49dRTIQgCdu7cyezkeMilphyrsgOVQ32+A41GI8rKynD77bejsrISLpcLU6dOhclkgiRJzOmazWbmcNLpNHQ6Hex2O66//nqW5spkMkgmkzCZTExB+PTPSGn+/PmwWq3YtWsXqxJsaGjAvHnz2DwVRY8OhwNWqxVWq5V9ZrfbodfrGQYqEuEn2antVEyQSCRYgBAMBhEOhxEOh/HKK6+go6Nj3BV8KHwj3ihTbbwBy2QyWXyjVA09E/H9MR40Fvj0ej2++c1vorGxER6Ph/HSbDZDEASWVqNn3kCPJ76BsFHQ6nA4YLfb2YiVZJbmU/V6/aA6VwjejYdc1tfX4+tf/zqmTJkCi8Ui41t7ezv+9Kc/4dixYwXlG4+Ngjmn05mTb5IkydrLy2QwGMTTTz+Nvr4+RCIRdHd3jzu24eDLxbuVK1fiwgsvxNy5c9l71NaLL74Y8+bNw2OPPYaWlpZxkUtNOVZAPZ+uHPbTw2Qyoba2FpWVlcwR8c6Q/53NZoPFYkEqlYLT6cTixYuh1+vR3t6OUCgEURQhiiJisRjC4fCoK90EQWDpMx6P1WqFx+PBlClTWCRJ6UEaGTgcDjYyMBgMzFDxozme4YlEAslkEqFQCPF4HH6/H5FIBF6vF8FgEMFgEFu2bIHf74coilnLIcaChsM3o9GIKVOmyAIYQRAQCoWQSqUgCAIrlqGRayqVQiKRQGdnJyRJkv2fsh3jZciGio+PnnU6HePz4sWLsXjxYni9XhY8kJGjfqFCIOJlPvApsen1epSWlsLtdrPRi9lshslkYoaZsJLBU9M5IhoROBwOSJKEeDwuK9YiB0yBIsnzeGAbDt8AsKCIfutwODB79mxYLBaZYaditJ6eHkQiEdV25EvnLBYLSktLGb94h6rGt0wmA6/Xy3hAgbooivB6vdi9ezd6e3uRSCRkma/xxDYQPiXvysvLYbVamWPV6/WYN28eli1bxmSL17mysjJUVlbilVdeQV9fH2KxGCKRCHp7e8fMpmjGsSoB5Rry8w9RFPGzn/2MRV7XX389rr32WqRSqaz1VZdccgmuuuoqRCIRNnm9Y8cOPPjggzJF56viRiMskiRh586d0Ol0sjVtLS0tOHjwIL761a+ivLycFTs4nU7Y7Xb2IGNLIxu+XeQYyQgCYKljGnGTslNxyTnnnIOFCxfi73//O8Lh8IhxKWkkfCsvL8e///u/o7y8HAaDgSn3vffei23btkEQBCxatAh33nkngH7DHIlE0NnZidtvvx09PT2ytNB4KfZQ8RGveAPNZzxWrlyJa6+9Fg6HA52dnbjrrrvQ19eHVCqFa665BldeeaVsfq69vR0PPvgggsHguOLLhc3lcuG2225DTU0NG+kMRS7V1jRSX7ndbvz4xz+G1WqF3+9nwazX60U0GkUoFGLzdrt370Zra+u4YBtILpV8o1QhH8jt3LkTq1atyuKbwWBAfX09fv7zn2PdunVYv3593vlG2BoaGvDDH/6QBerV1dWw2Ww5+dbb2yuTSZo+4h0sOWKt6ZzJZMIPfvADLF26FGazmTlcm82GRCKhio94d9ttt0EURfj9fmzbtg0PPfQQCwJHi08zjlWNcqUD6JHJZNDb2wu32426ujo4HA7mJOPxOJtfzWQysNlsKC8vRyQSQSKRgN/vRyqVgs/nQzKZlDnTsZo/IIfKCwpFfXT/ffv2wWAwwOVysVQwpYOpio93przD56NOfh5XOX9LI2WHwyFLiYwXDcY3g8GA0tJSlJWVQafT4dChQ+jo6EAwGGSpQ6PRCI/Hw0bpkUgEyWSSGQae1FI4+cSnfFA7XC4X6urqMGvWLLhcLqRSKUQiEXR1dSGZTOLUU0+F2+1mbU6lUti1axd2794Nr9eLVCqVd3zEL4/HA7fbzYpcqII0lUph69atSKVSslHprFmzAPRPf0yfPh0AmMwmk0nYbDZUVVWx+5ATI56m02kYDP3myO12o6qqCj6fb8gbLQwVGz2rySVwYg0jzbGRvtD3KUvG840+i8fjOHz4MILBILsXUT51zmw2o7KykgXrlPECTtRl8PaEZLKnp0e2DEU5T86TFnRu+vTpmDVrFmqPZy2pJoVsytGjR5FOp+H3+9HR0cHWV+/evRvvv/8+ZsyYgYqKClakN5b4NOlY1VIAatESpY1mzZqFX/ziFwCAQCCAdDoNURTZmisAshJ5UihAvotIPrFRocOf//xniKLIjBelaaZMmYInn3wSZWVlzOnzKTOKuJWkdKq88SO8442Nv87Ft3Q6zYKMl156Cc8884zsPhQg8e2nYIrnWb74Nlx8g8nlnDlzcP/990Ov1zO5FEURjzzyCI4dO5aX4pBc2CidaLVaYbFYWCrYaDSir68Pv/jFL9DT0yML8O6++240NzfjO9/5DgwGA6xWK7s3BblU6KMml7xBnzZtGqqqqvD++++ju7t7TLENhW9qRPo0a9asLL7RZ21tbfjNb36DeDxeEL7RtV6vz+IbzXOT7vH2RGkrCRc/76hFnTv33HOxatUqNlKl9qZSKWZTSM74dq9fvx6vvPIK7rvvPixZsmRcfIEmHStRrtEA0N8JVqsVF110EWbPns3SUBRdkdEmIeE7jV9jp+zIsejUiooKVFRUsAj/wIEDbPRRW1uL2bNns9Ea///UJqB/F5s1a9bAZrPJcHz+85+Hy+XCG2+8gXg8DqPRiObmZjQ1Ncmw8c883nzQQHw799xzUVdXB71ej1gsxpY5UeUhn41IpVJZSx0AdQUohLIPRS7j8TjjA9C/TeDKlStRUVEhazfxjnhVKHxqaTfiC/GEUoS8PL366qs4ePAgVqxYgZKSkqx5cFr+RvP8sVgM0WgU4XAYmUwGM2bMYDh7enrQ2dk5plMWPLZcfOOveWwUaFxwwQWor6+XfV+SJIiiiBdffBGtra1ZU0j55hvvXHm+kcOh4IF2hyI655xzcPToUfzzn/+U3VeZwdOCzk2bNg3nnXcempqaZHUnqVQKHR0d2LhxI7Zv355lU5T3I5s4Hr5A044VkKdR+Q6i9O6ll14Kt9uNaDTKjJJOp2PpXQCyNAi/KFgtxQGMXmAqKirQ0NDAnMehQ4dkjvWss85CeXk5WyOmhi0YDOKvf/1rVlpqxowZqK2txd///nf4fD72u8WLF8scKI+VN9r5VHT+muY+vvzlL+P0009HPB5HJBJBJBJBLBZjo1P6HrWZfqt0OmqUb0Xnr3k+OhwOJpeRSIS1m7IMF198sWx3IgrAEomEJvCRYeaXnAAn5uV4XlC73njjDezcuROf+9znWDDI8y4UCuEf//gHurq6ZEFvOp2G1WplBYiZTAY9PT1s/e54YOOveZ0jUgZxtP545cqVqKqqyuKb3+9n2NR4lG+d4wMjAMzOUeYgEongww8/xHPPPQedToeKigo88sgjaGtrwzvvvCPDPljmJN86p9PpUFNTg+uvvx52ux3AiZF1LBbD/v378fTTT8t4RPKsdLDjaVM07Vj51JQyfSsI/YUF0WgUZrNZlsKhaIQm8m+55RZMmzaNKbLX68XDDz+MTz/9NGc0Nhakds+dO3fi6NGjuPLKK9kcoho2AKptI2FXpnr5FA+ldai6MplM4t1338XBgwfzsq+nGt/OPfdcnH/++Zg1axZbgL5nzx6sWbMGR44cYUrgdrvxzW9+EzNnzmSpbuXIW5mWyqdy58JHdOONN2L+/PkwGo1sJM7/TpmqB/p3u3nqqaewY8cOBAKBguLjpyrIuVIbeOevNLg0uqVrXoYH453SgI9XZmUwe0Lt5dslCAKuueYazJ8/HyUlJZrmG2EjR8LzjTZ+UNM54tu8efPw0EMPYcOGDdi4cSO7dy6e5ZMEQUBJSQlWr16NWbNmyVK8VCvz+9//Hu3t7TIeKqvU+REuDbAo4BhLfJp1rGp5daD/pAaHwwEAKC0tlY3MotEo224rEAggk8nA7Xbj9NNPl6VE4vE4du3aJYswx1JQEokEIpEIK2jg7+31ehEIBNDd3Q2DwcCq0Hji22Q0GmUT61QyX1ZWxibr7XZ7Vpo7Fouhp6cH4XAYoiji8OHD6OjoGPd0MGHR6/XweDys5L+urg6nnXYac/bd3d1ob2/H9u3bWUTtdrtRXV2NxsZGVFZWslR5JpOB3+9Hb29vVnRZKKeqlk7U6XSYM2cOFixYwDIokiTJtoEzGo2orq5myi6KIgKBAD7++GN89NFHSCQSBU238Vj4NJoyVc0TtZH4RBv1k0xGo9EBeUd9RJXFlN0ZD2xqfFO2hchut8Nms2HevHlYsGABm8vTKt/4ND695vlGDoh0jtpIjri0tBQ1NTU4ePAgtm/fzgKprq4uGU8KpXNGoxHz589HdXW1bE0/2bsdO3agr68vyzlSf9CyRgqYaImUcppsLPBpxrESWGWqRkkXXXQRrr76apbqtVgsLF3zv//7v1i3bh1bCxiLxdj6LUmS2LyQclJ+rKmtrQ0dHR1MsGk9Ih8hv/jiizCZTIjH41mKwQvF3Llz8b3vfY8VIXg8HhiNRjz44IMQBIEVKFAkRnMoe/bswe9+9ztWGS2K4pjjJCxqfHO5XLjzzjtRVVWFkpISuFwuhsvn8+Hee+9lgQ0Zg29961tYunQpysvLYTKZ2LrjeDyOxx9/HB988AH8fj/733zQUOWSnxvmR3R6vV4mlxUVFXjggQdQWloKi8WCF154AWvXrkVvb29WZqJQ2Igf/C5fytEkb5Tp+6FQCA888IDsN1SkRpX4athisRjefPNN9tlYrGEdLt/U+n7FihW4/PLL4fF4YDabZaf8aJFv/LWyaIeXSx43BU+0GsFiseCyyy7D8uXLEQwG0dnZiTvuuIM5rHzQcOWSx6UmlwBgMpnQ1NSEn/3sZ2ykCoDZy9Eur1SSZhxrLqIOdLvdmD9/Purq6lBRUSFbVgP0j5CqqqrQ0NAg2xKQXtMcnpoSjLXA0JpYNRxEtAkFf+wWH2kZjUbU19dj3rx5bJcXfn9Pt9vNdhuhdC858ZaWFuzZswc+n48VLOSrcImIlmxUVFSwjS4IYzqdhs/nQygUYt/V6XRs4Ta/0xSN6AOBgGwRO92rUKTk57Rp03DKKafA7Xazz0VRxP79+/Hpp5/C5/OxYIHWFuv1ejaaoxFPvo10LlJLc/Nt44NB+j4AlhLlRwJkuHLxjka1yvfHg9RGqsrUn9vtxty5c9HQ0ICpU6cynePlUot8y+Vo+bR2aWkpzjjjDOZ0KFinAxb0ej2cTieT03Q6jQULFqCtrQ379u0rCDZBEDBz5kxMnz5dljUgbHv27EFbWxuSyaSqXFKtgMViwZQpU9gaXZ/Px7ajVDrm0ZLmHStRXV0d7r//fhiNRpkQk2OyWCz4yle+gmuuuUY2P0QdG4/HsyplCzFXkIv4OR5BEOB0OvGjH/0IFRUV7HQRipipwIePyAib3+/HY489hq6urrw7U574tYr8onvl3AfhNhgMcDqdcLvdWdiUxktLfAP6efflL38ZN910E8uk8Bs9ZDL9Gz/QLka04QL1EUXdWsE3XN7x227y3+XnsrSCjSelzgFgdRn33Xcf0zs1ndMi34gotasciVMqldbHEza1HafInlitVnzjG9/A1q1b8dBDDxUE0t+bVQAAIABJREFUj06nw6WXXoqmpiZmH6itmUwGa9aswaZNm5hs5pJL2sWOdJRPkw9UwDQS0qRj5edBbDYbLr74YnZqDQkLX2RBczokLGrRNtCvQG+++SY+/vjjvB3OOxA2eg2ciJRIsGnETSma4WALh8MFiywHm79SpnQA4IwzzsCyZcswe/Zstk+p2u8LTWq8mzZtGi644AI0NjbKPud3ueGXrvAPAFi6dCluueUWvPTSS2hvb9cMNiIl7xwOB6688kokEglmmGn9dTQaxT/+8Q+WiVDKeKFoqDpns9lw0UUXob6+Hg6Hg60F5XWuvb0d69evx5YtW2T3KhSpYTt8+DD+67/+C0uXLkVTU1OWraRNIwhbJBJhO7JlMhksXLgQCxYsYP+h0/Wvq7/ooovwySefjHpXrOHQnDlzMHfuXFRVVcmyXvyDnCIfjPM6V1JSgssuuwz19fVZKfJIJIINGzaM+Whck46VJ7vdjpUrV2Lq1KkA5EaWOs5oNMoWRCsVh19y8tZbb+G9994rmGPlSamUfMRIuCYDNmUkTxE1YT3zzDPxne98Jyc2tTmXQtP/Z+/Nw6Sqzvzxz721V3UtXb1A283SzSYNqGwSonGMLKK4ZAwy44CaxElMTEw06sSfmoxozGImcVwSR/KLRhPUmGiiKIjEaDQkQUCaHRtBGrqht+ra9+V+/2jew7m3bvXeVbebep+nnqqurqp7Pvfd3/Oec0iJx40bh9WrV7NKCiCXSzIGfHciOd1MJoPZs2djypQpaGhoYPPyhaaeeGez2bBixQq2QT8vl+3t7di8ebNsPl8rzpUo1zhEUYTD4cCKFStQVVXF5huVOtfS0oK1a9eqlh0LTTSOEydO4LnnnoNer8d5550HoGdb6ff78dJLL6G1tRWJRAJf/OIXMWPGDFnZv7KyEpdffjmSyWTeHevixYvZvgC5Stx8lg5AVrG02+1YvXo1KioqsioM0WgUGzdulG14MhSkGcfKR17KKIwmmxOJhMwoAZDt+cmXMfhoJp1Os8N7ae4z17Xof0N5k3Nh4x+SJGHRokVYvHgxMpnuzdlLS0tHLDagZ76RY+I/rzVsPeFzOp24+eabUVtby8amlMtZs2bhiSeewMaNG/Hmm28yZad7QvgSiQT+7d/+DXPnzsWTTz4Jn8+nad7l0jl+qzxAPaAqtFwqdY5e33DDDZg5c2avOkcd7CMBG79iAug735LJJDtrle8VKZTOKZfW0NQev/McXwHjv5tL53h8vB0aKnyacaxqxCs5v7EDIC8rKqMYviuTvkPNE06nE263m93URCLBjlbjI9N8YKMWdxL2uro6zJkzhykt7VBDTU56vV62NIUWqBcKmyB0dxNSJEyKazQaYbfb4fV6WXTM800URbYBv06nY6eeqPEtEAiwTQXomsoMIZ98o+sZjUbU19ezDQPU5LK0tBTjx4/HJ598goaGBhiNRpSVlQHoPnuVjuKKRCKw2+2oqqpi83iFwtebzklSd1e3Xq/Pksuuri64XC5kMhm2hSGVhem3C41NeX16f/LkyZg1axaMRmOWPenq6mI7u3V1damOVYvYwuGwrPOeGiCVfOvs7GTBA78evqd5x3xhi8ViLNCMx+MoKSlhyxSDwSCi0WhW9SBX0E64AoEAOjo6EAgE4PF4VJc8Dhafph0rEb+NGk1YKyMuatHn28r55TXUNfuFL3wB1157LTuWKxAIYNOmTdi8eXPecdntdtx5552oqKhgR8zRNlxerxc//OEP4ff7s+boysvL8eCDD6K0tLSg2MxmMy655BK4XC6UlZWxk1CcTifi8TieeOIJTJo0CXfccQdTBirNfO9732NO1el0yjYe4Pn26quv4vnnn5cta9DCnCtFzySXlNGpyeWVV16JpUuXMgNnMpmwbds2fP/732cds8lkEvF4nHXVFppy6VxPcul2u/Htb3+bHTjw/PPPs93DtMI7ZTbNV0goQOXtSSqVws9+9jN8+OGHbK08fwKMlrG9/vrrePfdd2XNO/yUBL8BCDkYZWauzBrzTVu3bsXu3bthMplQXl6Oe+65BxUVFUgmk1i/fj3Wr1+PUCjEeEgrP4iSySTbNpU6gMmmDKfOadqx8kJPgsyTKJ7e6o62UKPv8Q6Wj7xoXshgMKCzsxMnTpxgUXU+lYOEt7m5GeFwWNYkQWsCT548iWAwyLJbUg4y6oXGRl3IdP+tVitcLhecTifC4TB8Ph+OHz+Obdu2Yfz48aiurgbQzTen08nOitTr9bKThfhHOBxGZ2enbGcUtXuZT6OmbJrgy4OHDh1CMBhkmTsd16XX6zFt2jQ4HA62TKy9vZ11KNKz2jab+cBXWVmJyspKmM1m2Gw2HDx4EM3Nzf2WS6fTyQ6OsFqtsvEXmne84wFOb2PIL7dQ2hNRFOHxeNDa2po1P8ePX4vYwuEwIpEIq4Lw2/opna0aNuC0Yw2FQti/fz86Ojryio32E+czbNK5UCjENtrhbT+NmV8BwvsQ3qYMl85p3rHypUGa76GohO/Wi8VizIApv09GmwSKvnf8+HH8/Oc/Z0ab/14+sPn9fvz85z/PKl3wk/A0Vhq/JElsY/dCY4vH4/j73//Orr18+XJ2fBjd+48++ghr1qzBqlWr8O///u/95pty/2NlhpBvvvHjIwUnuQSAZ599Fjt37pRlBVQ6/vGPf4xPfepTWd/XAr558+bhsssug91uRygUwsMPPwyfzzcoudQKNv4aZFz5eUjgdIVBKZeCILANLpS/MRKw8XPJ6XRalW/KhASApmwlPzZe52jKqzd8vFzmi3eadqxEyrk3ikYAsJtJz3y9nG4K33jxl7/8BUePHkUkEkFzc3NeN6ZXI368/JwAOVue2Tqdjp0OQ9kAv4kC0D13t379ejQ2NuYFGx8hNzY2AuguESeTSUSjUcazhoYGpNNp1mBAc7K0zkyv1+PSSy9FTU2NjG90jUIoc2/Ey+WuXbuwb98+HD9+PKtESOeNAtklSP49onziKysrw3nnnYfa2lpZRsNncb3JJT8/xTfKEBYt8o4nklEyumRPGhoasHv3bhw7dizn97SODchd/ia+2Ww2XHHFFbBarchkMpgxY0bWPPNwrPUcCCmdIY2PnnuTS943DCfvenWsgiCMA/AcgDEAJABrJUl6VBAEN4DfAZgI4CiAlZIkeQc7ILXmAroJdHPoPT7TI4XgD8Kmm8VPYP/lL3/BP//5TzaPp2TScJIaNuVY6TUfcdH/RFHEkiVLsGDBAhk2vhMwHA7j9ddfZ4cW5xPboUOHcPjwYVZV4Bep79mzB3v37pUtJ+JLjCaTCTNmzEB1dXUW39QckFp0Odz4lMTL5a5du/CHP/xBttaaH5+aQpM8FxKf2+3GRRddBIfDkRMj/1opl/y8Mk9a4V1fdY7PYCjb3r59O9atW6e6tSP/fS1gI1vIyx+Psye+WSwWrFixAhUVFZAkic2t0+/zu2ZpSeeA0wfR8//Tglz2JWNNAbhDkqQPBUGwA9ghCMJmAF8A8LYkST8SBOFuAHcD+M5AB6KMivmbyi+qf++99/D+++9DELq39bv11lvhdrtlu8Tw3wO6lWbz5s14/fXX2XFUajdwuISmJ2z8e6QU/DM9LrvsMixbtgzTpk3LwgZ0Bw3PPvus7KSNkYKtJ771pAjDja03fMoNH3jD1hPvqBuaV/xC4ON5o2xoUf6/J97xaySpElFo3vVXLmk6gu9w57FRNQzIPmKu0NhEUcSKFStQV1cHi8WCw4cP4+WXX5b9vz98o7Gn02n4fD488cQT7NSY4camhi+Xzi1evBjnnHMO1q1bh48//lhTctmrY5Uk6SSAk6deBwVBOACgGsDVAC4+9bFnAbyLQTjWHq4Pn8/Hyoa0dIGWbHR0dMBoNMJms7GbyWd48XgcHo8HjY2N2LZtG6vJKx+FIl6A6FmpBCaTCRMnTmTzc4SNXtNk/P79+7Fnzx7V/UsLQb1ho3kc2srQbDbLSo1Ad5mqvLwcHo+HlZYLjc3hcMDtdssyc7vdjoqKCoRCITZXZzab4Xa7cfbZZ2PhwoUsI/J4PLIN6dUi5kLhI57QYQ98AMBj43nncDhgMBhQXl6eFSRpCRsRL4/UcGc2m2WbevBlcX7ejkhLfBMEARMnTsS5554Li8UCo9GIyspK9n9qLKOAm8fmdrtRWVmZxbdMJgOv14uTJ09i7969slNjCkm846yursa4cePwxhtvZNkUNVuTTCbh8XhkO9MNF+/6NccqCMJEALMBbAUw5pTTBYBWdJeKh5wCgQAefvhhFlHGYjEWsYRCITz44IP41Kc+hfvvv59tIk0l0FQqhT179mDNmjXo6upS7RLLdVPzWcrpKZosKSlBTU0NKisr2RwIYaOSx2uvvYbf/OY3bJP6kYKNlODaa6/FqlWr2Gb9PLZLL70Uc+bMwUMPPcSWPBQSmyiKuP7663HOOeewY/FMJhM+97nP4bLLLsNPfvIT7NmzBzqdDnPmzMH9998Pl8sFi8WCTCaDzs5O3H333Thx4kTW2sFC8Y6ffxJFEaWlpbjvvvsgiiIsFgtzNDw2Je8kqbspjQ6fVjaLaFUur776aqxYsUL1BBvCriS+3KgVbOQ8DAYDZs2ahUceeYTZTL1eD6/Xi+9973ssSaEs/fbbb8e8efNkfKPj+/7v//4P27dvh9fr1QTfRFFk3fZ02pdaMMQ/87R3717cf//9efEFfXasgiCUAHgZwG2SJAUUUakkCILq1QVB+AqAr/R3YASGyhF0U3kjDXQ73nA4zE5+EUWRCcaHH36IXbt2sa26cnWC8dfrz00cLDb+WvxcKe+E3G43FixYgHHjxjGnQ+Pv6urCnj17cPDgQXR0dLB545GCjd6jzRF4bKTgtHUeHzANFttg8AFASUkJGxPJpdVqhU6nw+zZs1mAMHPmTFRXVzO5JUfa1dXFlinxMlkI3vFOgnewpaWlbLkQBaw8NsJN52MS72h3m966gvOBTYlTeS1B6N77mM731Om6T4viy8Jk5/jxa4FvakSJhMvlwqxZs2TOp6SkBJ/+9KfZUjDSw4kTJ8Ltdsv4duzYMRw6dAhNTU3weDxZB5bkW+f4a9O4ad9jnU6HGTNmZB2WwM81m81m7NmzB0eOHBk2X6CkPjlWQRAM6Haq6yRJeuXU222CIFRJknRSEIQqAO05bspaAGtP/U7OkSpTc95xq80pkCLQqSFk2IBuJfD7/XjwwQdx4sQJ2bFVysXdPd3Y3igf2KZOnYq7776btf7zArFv3z7ccccd7OSekYaN/keHofPYaFu1SCSCcDjMFH8osA0Gn1LJ6cQMiqJvueUWVgamzIdw0h7OxCt+16xC8Y7W0NLSBb4phM8O1LAZjUZmwNR4xxtrrcolHXRBjpScEckkdXTTvdIK33hs9PD7/Xj88ccxbdo0doINZeB2ux3f//73Gd8IP9lGnm8bN27EM888w+xKoXWO511fdI7HF4vFcPLkSXzpS18aVl+gpL50BQsAfgXggCRJP+P+9RqAGwH86NTzqwMagYKUwkKAgdPzivz7fDpP308kEojH44jH48xg0EMtUskXDQQb3zBB2Px+P37/+99j//79MowjDRv9j9+CMZlMIhKJIB6PIxQKIRQKIRAIyKLMfGNT4qPdXGjHJX5ZEym+suGFl0ulTBaSd16vF++99x7q6+sxffp0xGIxiKKIRCIhqxJkMhlZyY0qRrxcEu+OHj2KDRs2sJ4GrcslNbRQNtTU1IRNmzax8fNbOyqdqxawZTIZvP/++3C5XAiFQmhqasKvf/1rLFy4EPPnz5cFtcQ3+q4a3z744AMWFGlF5ySpe8XDK6+8gunTp+Pyyy+HwWAAkK1z/Hf5Xc3y6Qv6krFeAOB6AHsEQWg49d496HaoLwmCcBOAJgArh2xUUFcIpXLwkTIvBLSgmyJx2mEjV9v4UEQo+cTm9Xqxbt06VtYYqdiA03vSkrNKJBLMsQaDQeZcybEWEhtdJx6PIxKJsCoJzx8+GyK89KB9n5VyyWcF+cbn9Xrxt7/9DSaTCRMmTIDZbAYAtmMUH9z1hI3n3eHDh/H0008zQ6Z1uVRiO3bsGH7xi18w3DR+MshasyeZTAZbtmxhDqa5uRnPPvsszGYz5s6dmzUeNb6FQiEcOnRIc3zjrxkOh/GnP/0JJ0+exJIlS5hs9kUu861zfekK/huAXIvBFg34ytnXYa9548tnAvQ5eo+MciQSgc/nY1FlIBBAe3s7M9B0M5VpP/2G2hiGkorY1LER8ZtiJxIJ2V7HoVAIwWAQsVgsK4Mfbmxq+ADgT3/6E7Zu3YpVq1ahrKwMkiTBarXCYrEwh0RlUuD0vrtPPfUUGhoa0N7erjne7dy5E8eOHYPZbIbT6WTYMpkMbDZbFjYyZuRseN51dXUxI6YFbD3JJekXj40COZJRZcaqJb71hG39+vXYvXs3DAYD3G437rjjDjidziy+eTwePPnkk2hqamLl30Jh6w2fIAjYv38/vvOd72DZsmVYunRpTp0rpL3U3M5LypvKl9P43WuA0xPZ4XCYrbNKpVIIhULsRJRcnV/Ka+Urau4rNr1ez/b+DYVCTKFbW1vR3Nw8orHxzWeS1N3M09TUxIQ8FAohHA6jtbUVkUgEwWCQLSEqBDb+OplMBkePHoXf74ff72cnhvA8MBgMLOoPBoMsG9+xYwcaGhpkczta4Z3H40FXVxd0Oh1cLhdaWlpYZk6OlU4yMplM7LtkwEKhECvfd3R0aAobkZpc+nw+NDc3y7C1tbXJGgH5jFVrfOsJ27Fjx9Dc3Ay9Xo/y8nJcc801cLvdAOR8a2trw7Zt23KuKigEtlz40uk0vF4vPvjgA0yYMAH19fVsxYRyUwsK9ILBIAuK8oVPyNdNAnqesFZ8DsDpFnK+o5R/ptfUOQqcLgWkUinZBvF0E0nwBpruS5Kkmr0PNbbS0lLcddddqKiogMPhYI517dq12Ldv34jGRq+JrFYrbDYbrrvuOtTV1SESiaCxsREvvvgiwxgOh9kynKHENlB8DocDX/rSl9ipPlarlR2RRx2LBw4cwJNPPsn44/P5ZCVtrfKO8KltfsHzkMapLL/xJ4ZoDZtSLm02G2w2W9Z6R36TFR6HlvnWk87p9Xq4XC62fIgff75t5VDhs9lssNvtuPnmm1FfX8/mXIHTu0WFQiF4PB48/PDD8Hq9ecOnuYwVAEv56QbQzaTXFL0AYIoQDodl3+cfuaKTfAYV/cWWTqdZyYYiyWQyiY6ODtkRaiMRGyDfrszv9yMQCGD//v0IBAKIx+M4fvw4W2+mBWx0XcKTTCZx+PBhtLe3syUpfCepTqfDJ598wk5Foe+PBLmkTI43ZHwwxPOO//5IwKaUS5rHH43YlPakvT174YaWsdF1e+JdJBLB3r17EQ6HZetWKUigZk9+Kikf+DSZsSq+k/Va7T0g++ao3bTB4h1shKn4TtZrenY4HLjpppvgcDhkkeXvfvc7fPLJJyMam/I1jVv53lDOeQxF9Kz4jixzU3vmDZZiLLJn5euBUKF5p/y7iK1vdCZiOzWWIcOn1EU1bGq6OJz4NJmx8kRRCr1W+39v3+/rZ/NNPWGjuUZ6n+Z2cpVDRxK2vrynZWyAuiFSy3Z6+77ytRboTNW5XO/l+n8RW34pF76+jjWf+DTvWIFs49Xfm6JFISHKhS2dTsPv92fNCfCOVfl9rdFo5hswuvEVsfXt+1qj0YwNGDn4NF8K1hoNZemmJ9LpdGxzbO7a8Hg8bAefoaZ8YSsEDXVZSmt0JvKuiE3bdKbqHFB0rP2mM1ERRjM2YHTjK2LTNp2J2IDRjy/fpeBOAOFTzyOByiEf64QePlvEph3qDzYACAH4aPiGM6SkxAacubwrYtMO9VfnRhK+/upcfjNWABAEYbskSfPyetEBUn/HWsSmDSpiG/x3CkVF3g3884Wk0SyXAxmn2PtHilSkIhWpSEUqUl+p6FiLVKQiFalIRRpCGpRjFQRhmSAIHwmC8LEgCHf38WtrB3PNPFN/x1rEpg0qYhv8dwpFRd4N/POFpNEsl/0e54DnWAVB0AFoBLAEQDOAbQCukyRp/4B+sEhFKlKRilSkUUCDyVjPB/CxJElHJElKAHgRwNVDM6wiFalIRSpSkUYmDWa5TTWA49zfzQAW9PSF0bx2qYhN23SmrqkrYtM2nYnYgNGPb9jXsQqC8BUAXxnu6xSCithGLo1mfEVsI5NGMzZg9OPjaTBzrAsB3C9J0qWn/v7/AECSpB/28J1RG6UMNTaDwYBJkyYhFovh6NGjQ/nTOakYPY9cOhN5V8SmbTpTdQ4Y3BzrNgBTBEGoFQTBCODfAbw2iN8bMlI7SmgkkSAIMBqNmDZtGiZMmJB1XFIubMr/jTTsI3nsfaHRjK+IbWTSaMYGFA7fgEvBkiSlBEH4BoBNAHQAnpYkad+QjawXUrtJuW5cT+f0aY0EQcDcuXMxZswYuN1uxONxiKKYc6w85nnz5qGsrIwd6JtOp/HJJ5/kLePtC41WvhH1BR+dyjHS8I1m3hWxyd8fKdgAbeIb1ByrJEkbAGwYorH0iZTZW2+vgdM3jQwavcf/XUjS6/Uwm80QBAGiKOKss87C2LFjEYvFkEwme8VmNpthsVhQXV2NsWPHIplMIh6PIxgMwmQy5RuOKg033wRBgMlkQiaTQSKRGPLx90b9xWc0GmGz2WTn7dLxgHREINCNNxaLIZ1ODzeEnNRfbAaDYdRiA7RvT4h6wmOxWGCxWNjfPA56hMNhJJNJTWID+s47URThcDgYBl4u6dxrktGhIs2fx6p2w9RKnrnKoKTIvMAoH/S5AuybDAAYO3YsLrnkEphMJuj1erhcLiQSCWzcuBF+vx96vb5HbJ/5zGdw0UUXsb/D4TCOHj2Kt99+G/F4vCBKkW++mUwmXHDBBfD7/dixY8ew4x0IPlE8PfMydepUXH/99UilUkilUohGo0gmk8yYxWIxJBIJJBIJvP/++2htbR1WPIPFxvNu6tSpWL16NdLpNJLJJMMWiURkf49EbCPBnvQF26JFi7B48WLZ9wkbyd8LL7yAQ4cOaQIbj4l/3Re+uVwu3HLLLbDb7QwfyaHP58NvfvMbBIPBIcWnacfK3zx6pteiKDJjxT8LggCdTieLTkgRKEJRvqekfAgNj8loNKKsrAxmsxkmkwlWqxXhcBiJRAKpVErmWHlsDocDdXV1mDFjBmpqahAOhxEOh/Hxxx+jra0N0WhUVnIsBDZ6Hm6+iaIIq9WKeDxeMHxKJ0rPNTU1GDdunMyxjh8/HhMmTGAOJhwOIx6PIxQKyf6OxWIwGAx5C476yjuXy4WpU6dCFEXodDr2PwAYN25cFrZEIoFAIMCCBy1jG+n2pC/YSktLMXHiRNlv0PRRIpFALBaD1WqFTqcrODZgYLwTRRFnn302ampqUFdXB6vVyvCRXNpsNtTX16OtrQ1NTU1DViLWrGPlb5yawSJlJqGnv/n3SBFozpEEJ5PJIJVKsf/lW2iU2IxGI9xuN2w2G8xmM+x2O0KhECwWCxKJRE5s5513Hr773e8yA+bz+dDW1oa3334bXV1dbG62kNjyxTdBEKDX62EwGIYF12DwXXnllbjhhhvYofW8UY7FYojFYvD7/YjFYggEAojH4/D7/YhGo4hEIsz5EGmBdzNnzsSaNWtgNpthMBhY0ED8SKfTiMViiMfj8Pl8iMfjsNlsiEajMJvNiEQiCIfDmsQ20u1JX7BVVlairq6OfZbGTnyLRCKw2+0wGo0FxTZQfKIoQq/X42tf+xrmz58PQRBk+Egu3W43vvjFL2Lv3r146qmnGD8Hi0+TjlUZnfARCD30ej27mRMmTMDy5cuh1+vZ+7wiJJNJVnKLRCIIBAJ4/fXXEQqFmKDQtfJVQhQEAWazGfPnz8e4cePgdDphtVphsVhgt9uh0+lgMplgNBplSq7X61FSUoLPfe5zmDx5MsrKylj0DwDRaJQJmCiKBcMG9M43/pn+R3wjo0WCLgiCanbAX1Ov1zPnVQh8Op0OixYtQk1NDSwWC5s7nzNnDsrKymRGjIwxKbkgCIyHNO9In50xYwbcbjf27NkzbPPH/cU2btw4lJWVwWQyZTlH3oDxmCRJgsFgkPFNC9j6Ipekcx0dHXjjjTeQSqX6JJda1TmbzQaXy5WTb0ajkU1NFQrbQPDxvsBgMGDmzJkoLS3NwsfLJQBMnDgRy5cvx8GDB/HRRx8NGp/mHGuulF+p5ORwDAYDJk+ejK9+9aswm83sJgOno2fegPn9frS0tODdd99lpVIiPlIZDqFRYjObzbjwwgtRXl4Ou90Oq9UKq9UKp9MJQRByOlaKssrLyxk2s9kMSZIQCASYgykktlx8o7EplZ1XEFLiVCrFlIEwkGIrsfER7HBQb/j0ej2MRiOWLFmC+fPnw+FwwGQyoaSkBAaDIafzMZlMrHwdjUaRTqeh1+uRTCaZ850+fTrGjBmDjz76aFicT2/YKMhbtGgRzj///CxsuXTOZDKxprxoNIpEIgFRFBGPxzWDTc2eUJDGB2sVFRX44he/iMbGRrzzzjuypque5JJIazpntVrhcDhy8s1gMDDHWghsA8FnNBr75AuUcpnJZKDX63H55ZcjnU7j0KFDg8anKceqvIHKVJ+/gTfddBPq6+ths9lQVlYGq9UKg8HAHIokSbJlKiaTCYIgIJFIwGKxMIPA3zR+8jof2ChytNvtcDgcsFqt7G9JkmCxWBCLxWRlDr1eD5PJBJ1Ox7Izk8kESZLw0ksvYefOnYhGowXHpsY3iiKJh8pSG+9YM5kMdDodc0CiKLJSFD3z2KgRJplMFgTf4sWLsWjRIsyaNQt2ux12ux0Gg4EpOBkoGi/9Dr1OJBLsmZzPtm3b8P777yMej7OGkkJgu+SSS7B48WKGraSkhGU0fdW5QCDIEH1hAAAgAElEQVSAp59+Gh6PB5FIBKlUinWvFxKbmj2hQILXMZqumTVrFn7+85/jtddewxtvvNGrXPLPhcCWS+coaM/Ft0wmI/tMPrENBF9ZWRnuvPNO1NbW9ssX8M/xeJzdo8Hi05RjBdTr6Xza73A44HK5cO6552LOnDlwOByqJWDg9E0hA63T6RAOhxEIBACcLiuoZTnKCG24sBmNRvag5qVoNIpAIABBEGC1WmVlRL1ej/LyciYQXq+XGajGxkYcOHCAOaJCY1OWa+jBR8+iKKKkpAR2u505H4/Hg1QqxaJN4HTEyTsjZQZI3aXDZch4fDw2UexuBpkwYQIcDgfjZyaTQWdnJzPQypZ+vkMxFAqxeR/if2trKw4fPiyb2yoE78rKyjB+/Hg250aZjF6vRyQSYZUfXu9oCoaw+Xw+tLe34+TJk+js7GQBU76x6XQ6lJaWsioC8UppT8ix8hUUSZLgcrmwcOFCNDQ0MJ4CueWSH4eWdC4ajaK9vR1OpxMGg0FmKwOBALq6upjNLAS2/uArLy9HTU0Nzj//fFRWVvbZF5BTpr6MYDCo2vw4EHyacaxKhuVK+a+88kqsXLkSVVVVsFqtsnk1UlSa/yBh4Ofd1q5di61btyIUCsmcDz2GM7pUw2Y2m2G1WmG321nz0mOPPYY9e/YgFAph7ty5+N73vsecDM29WSwW7NixAz/84Q+RTCaRTqfR2dmZlQkVEhvPN6WS8w0hV111Fa677jqG4d5774XH45H9Jhm4fGLrCR9fdTAYDHjnnXewc+dO3H///Zg/fz4MBgM+/PBDPPTQQ8z4khwSBmoKofl/KuvTcygU0gTveGxz586V6dwrr7yCF154QTb3RZhonjyZTKKkpATf/OY3ceTIETz88MPMkeYbm9PpxK233orKykq43W42/dJfe8JXHfItl0Ohc6+88go2b96Me+65B7Nnz5Zhe+2117Bu3bqC2JP+4jMajbjttttw/vnno7y8vM++gPSWysBNTU348Y9/zBKaweLTjGNVI7VopaSkBGPHjmURJQA2X8PPzdFNUUYufDSmJLVSx3DhGjduHKqrq1lZmn8Eg0F0dXUx4SktLWUYUqkU4vE4PvzwQ+zZswetra0yA52L8oWN8NEz8Y1XSBqD0+nE1KlTUVdXB6fTydZz8vzkswWtYFPiE4TuxiOv18scyd69e7F79260trayCgIFR3wWRHJIwREtsYrH473K6HDh47GJosiwpVKpLJ0LBAJoa2uTfZ74ppwrdzqdcDgcOfHkA5soinC73aioqEBZWRlsNhtsNhtMJhNSqRR27NiRVS2pq6tj4yZZrq6uxoIFC7B3715ZEFhIbPTck85RdcDv97PleTS3Td8JBoPo6OjQjD0B1PGNGzcOdXV1mDhxIsrLy5ns9cUX0Hv0WxaLBePHj8fx48cRDocHjU+TjjWX8RIEgU2qU4s/v30f3+wiSRKLbIh4ZQfku4zkQzgIjyiKWL58OWbNmoWysjJYLBaYzWb2EASB7SAUj8cZowlbR0cHHnjgAXR2djJMAGTzIIXClotvfBRI2Orq6rBmzRoAgN/vRzqdZiVRUnatYCNMRGrVDuJtMBjE/fffj46ODplzJGPNGzolvlyPfGDrjXdUFuR1jpqS+HtC41ViUxr4QsglVYl4nSN74vF4sGbNGnR0dMiMMWXqvD1ZtGgRLr74Ytx+++3o7OzMwqVVneNJkiQ2NcZjU5bpC4WtN3xLly7FTTfdBLPZ3G9fQEQyW1tbi9tvvx0vvfQSXn755UGPW5OOlYi/iTU1Nbj00ktx3nnnMcfDl5wSiQQaGhqwa9cuAIDVasXll18Oh8PByqdqC7qVgpIvoaGSBl/eaGhowIEDB3D8+HE2DlpQD4AZ6UQiwZYQKUkL2NSUm2jp0qWoqalBOp1GVVUVW4bBY+tpLVmhsQHqXYpEFDFTcw6Po6d5b6Bn46UF3pHB4nUuHo+zDI93nkoKhUJ45ZVXWDBYSLnkdY6CnY0bN6KxsRE+ny+Lb5s2bcKRI0ey7AmNXQty2RPflOPJZDKYNWsWZs6cibKyMiQSCZlTVXbEFhoboO4LZs+eLetdSKVSaG5uxltvvZWFg3htMBgwd+5cVv6mz6lhGbWlYBJ+ADjrrLOwatUqlJSUADjtZKirMBKJYOvWrXjxxRchiiIqKirwmc98hu22wZcAeisv5kNg+El4YnpDQwNefPFF2edohxAAbC6HyoZKQ6YVbIA8uyNjRt2z559/PjPItMRkpGFT4qO/+bkdXrklSWKOlYyYGj5lRYWnQvGOdIdwEe9o20UaOz/Pqgw2YrEY/vSnP8lKc/nGRrpGD75v4c0338TWrVvZWHi+vf3229i9e7em7Qmgzjcge2lMJpPB2WefjWuuuQaiKLJMVhCELJnVCjaed9XV1Vm+QJK6953++OOP8fTTT7Nx893EvHM+99xzZRt98Jt9DAU+zTpWURRx5ZVXoqKiAq+++iq7OcRkMlyxWAwfffQRfvOb36ClpYXdTL5RhBewXKWNfJc4+M42ZWMBP17KDPgyotKIqWUAhcTGl91onEuXLsWyZctQV1fHFminUilZeWokYOOJx0djo12w1GSN5JK/P2qKrDXeEdGyGJ53F1xwASZNmsQ+T8uLzGYzwxONRtHZ2YlHH30UXV1dBcFG9mTatGlwOp1M5zZt2oT33nsPjY2NALIPDKDvat2e5OKb0p7wY+M7sZUBkZZ0jnhXW1uLsrIyjBkzJssXeL1ePP7442hqapJNj/EJDP1N94IPFGmbQ35KZjCkWccqCALbT/Uf//gHXC4Xe5+iZ7oxoVAIx48fRyaTQXl5OUwmE8rKytg8rCiKCIVC8Pv9MkNeiLKGyWSCzWaTtb6TQJeUlKCiooKVoyRJQjweR0dHB+sapoyH8CmziUQigba2NlmZuBAKTpGhyWRCeXk5pk6divnz5zPh5TM6vkTKO9VcVKhyFJAbH3UZ0vrh0tLSLKdpNBohCAL8fn+fd7ApJO+UZV2v14v29nZ2YlImk8HYsWNRVVXFMkCLxQKj0Qir1YpQKIRgMMi2MaRycb6xkc7V1tZi8uTJCIfDrJz98ccf44MPPuhxTC6XK8ue9JZ1a4lvvPM3GAxszTz/ed4WqeleoXVu/PjxmDlzJiorK9kexrzti8ViaGhogMfjyar4KJ1qOBxGW1sbWxJHTnaonCqgIcdKURMvFDqdDmVlZbj33ntRUlLCSmh8xJXJZDB16lT88Ic/zOquLS8vZ+tDf//737MWcv7m5UNIeGzz58/HhRdeiPHjxzNDTEJyxRVXYPHixfjBD36AnTt3AgAaGxtx33334dprr8U111wDg8EAu92OH//4xxCE7m0Rad6L1j5+5zvfkQlYvrAR8a/r6+tx3333weVyZfFNkiTZWjKDwYBkMsnuCzkmtSwiX8qdCx89ZsyYgfvuuw9Go1GWqd1zzz1suoLwGI1G+Hw+PPDAA/B6vSyo4Etv+cwIeuMd/14mk8EvfvELjBkzBnfffTdcLlcW70RRZGtceZ2jbMDn87Hr5hMbr3ORSASPPvooQqEQTCYTYrGYrKzLj48czte+9jXMmzdPZk/IMdPnC2VPiHLxTYlt2rRp+OY3vwmXywWbzabKN35rUa3oHB+48lUf3qbwY+QDBqA7qAW6bcnrr7+Od955B7feeiumT5/O5JPs6FCQZhyrGlEJxu12w2KxZM1JEQPMZjNsNhtb7E2ZHL97CpWjaE6oEAIDdEfPTqeTZS98xkq7LtXX18uiRp2ue9Ns2vBcELqPQqLdVGghvsFgQCwWk21nWKgyKfHKaDQyg0TjIb4Rb3i+ORwOLFiwgG3iwe/xHA6HsWvXLib8hcLGE49Pr9cjHo8jGo2iubmZVUdoFxjavnDOnDlobW3Fvn37svhUKLnkSS3jkaTT22UCUOVdTzpHFYpC61wsFoPP50MgEMiZgfIZoCh2b5BRWVkpw6asOGiZb5Spnn322aivr8fYsWNhNpuz+EYnY7W3t6v+Bv2dTyovL8eYMWNgt9uz7CWN56OPPsLRo0dlZ1fzpXF+kwsAiEQiiEQibGvNvizp6y9p1rHSTeT3guTTf7oJZLT41nkqs1LkRb9DkU2h5goAZM2rKrEJgoAbbriBRcRUXqPlAWrYgNPdfENd0hgs8Y0DfeFbaWkpHnjgAYaNDhhob29HS0sLvvGNbyASiRQEmzKKpjHwiitJEvx+Px5//HF0dnbKytxmsxlnnXUWfvnLX+LQoUO47bbbZDsP5eq+LCTx83P0mjKbkapzPWFTLonS6/Ww2+0sQ+d1Thmka5lvdrsdd9xxByoqKthGNEq+HTlyBI899hhOnDihCb4BwHnnnYclS5agsrJS1V5mMhk899xz2LZtGyRJkjldfmtK3v7w5V9+SmrUO1ZltEHER01krKgcZbFY2ObKfFTT1NSEDRs2YPv27bLfLhTxncC5sPEBhcFgYAvYldh4ou+bzWYsX74cjY2NeO+99/IHDKeDoQsvvBAulwtbtmzB8ePH8etf/xrz5s3D7Nmz+8w3ImVXnxaILwW3tLTgmWeeka3xDIfDiEajMiPNYzMajZg0aRJuueUW/P3vf8c///nPgmNTzs8p538JC8ml0WjslXfz5s3DTTfdhNdeew1NTU15RnSa1JbXANnYlOVDcji0dj6XzhWS+sM30rdcfKM18rQKodAyCSDLmRIpKzzkE5S8owbYP/7xjwgGgwAg+xz9rTY3PRjSpGPNRcqoiZSFNjunKIwXrpaWFqxdu1a1TFAIUjYKKMtJRL1hy5XpWCwWXHbZZaisrMSWLVtU14MOJzadTodPf/rTGD9+PHbs2IETJ07gueeeg06nwznnnCNTACol8qe/8AKulsEpjWM+MPVEzc3NeO655xgmPnDgjZpyzfLEiRNx8803I5lMYtu2bcOi3AOlXGNQBkW5dA7o5t3s2bMxZcoUNDQ0oLm5uWDYlDqn5AcfyPOyRXsGk3zy2HhjrgWeAYPnWyqVQmdnp2ZsJV2/J3vJ84APvol3y5cvx9SpU7F582aEQqGc1+CvMxSkGcfKGxa6OS+//DK2b9+Or3/969Dr9WwhM7/5Nb9vJF8WpZtODSRKx6W8Hi9AVDYYLmx8yzdtE9cfbF6vFz/72c/Q1dWFVCqFiy++GBdddJFs04jx48fj61//OsuI8oFt3rx5mD9/PmpqamRNBJIkYfPmzTh48CCuv/56jB07Fr/61a8QDAbZaRK0Ibrb7catt94Ku92OdDrNSsHJZBIWiwVf/epXsW/fPrz44otMqYYLmxrGnuSGPktGmy9J8QadNo8g3lVVVeGpp57CgQMHCiqXag+6x8pKSk86R2U2WsawcuVKzJ07F08++SR8Pl9Bdc5ut+Nb3/oWAMBiscjmTIPBIJNLQRBw1VVX4corr8TZZ5/N1t/y2GjZUa57mS9sQ8U3LdhKtev1ZC+J+Oqmkndqy98IO9+sNJT4NONYlSRJEo4dO4ZQKMT2W6U2a34TbJqEj8ViKC0thdPpzOo6raioYMs8Ojo6EI1GcxpFuvZwETVPCEL3RvqpVIotTyBsdrudRZP8GEmxE4kEjh49io6ODiSTScycOZPNydKaLqC7I/f48ePsxBt+V6BoNDrk2Gw2GyorK2UHrxO1tLSgtbUV//Iv/wIA2LVrF7sPFCmazWZUVFSgubkZLpeLjZMOp4/FYqisrGR70xLlg288qfEllwIKgsBO7zEajSgtLWVZQTKZhCiKGD9+PCorK9HR0cE2X+CXJQWDQbb8Kh/YdLruE2DICMdiMSYvFNiRzlGnJhlll8sFURRZl3pHRwccDgeqqqrYHKXyekB+dW7MmDFZOidJErxeLxujIAhwu92YNGkSYrEYWltbs7C1tbXJNlcoBDb+Wr1ll7nsSSqVgsfjYWuM+/Lb+cLGXyeT6T75Sq/Xy5bcKDNsJe/oNCWDwcDsCvkGGn8ymYTX62VyPlh8Qj7nCQRByHkxZTouiiLrtHS73bJIi6ITQRBk7914441YvXo1c6y0oN3j8SCRSCASieAHP/gBGhoamOGi7ctybXeoJEmSVKW3r9isViub46A2dx6HXq/HHXfcgXPOOYetCeQPlCZFaG9vZ06SMt1QKIS2tjZ897vfRXl5Of7jP/4DPp8PXq8XPp8PsVgMgUAALS0t+Otf/5qFbyixCYLAtivkMziXywWj0YhwOCzbnJ6yVr1ezzY8p6yOz/DIaft8PtnOKQPlW1/xkbyRXNJ4lRmqcn0yANx44424/vrrIUkSurq68NBDD8Hj8TBMkiRh9erVqKurY3slB4NB1gn9wgsv4PDhw8Mql7zOud1u3HPPPaioqIDFYsGrr76K9evXMx0kfVSWVsvLy/Hggw+itLQU6XQa69atw/PPP8+ONSTMWtM5vtGKl0uHwwG73d4jts7OTpaZF8Ke8HzrSSYrKyvx+OOPo6qqKsuedHZ24q677kJLSwtzQqR3dDDEUGLrD77ly5dj2bJlcLlciMViePLJJ1l3OmEPhULMDgLI4p0kSfB4PDjnnHNw5513sk1cKBgOBALYvXs3HnvsMYRCIUQikUHj02zGCpyOUpSZDQkLb/AEQUAgEJCVbDKZDDuv78iRI/jkk0+yzo5UXm+4Aw3aBo66YvlOQ3KsdCYgvxk2H0FJ0ukNCEjw6TuSJMHn87H1lCaTiZVV9Xo9UqkUW+CfL2xU2iYe8XyjrkXCIkkS2wSdtjckpSasuXZjGk7iy87KkhK/y4uy5CQIAjo7O9HY2Ihp06bBbrfD4/Ggvb0dyWQSVVVVOOusszBmzBi2bIeWTPH3MV8BMJUOnU4nXC4XrFYrzGazLFil48R4PtIY+VOJwuEwy86Jj2rXK7TOqdkTKg2HQqFesRXSnvDX4p95mZw0aRLGjx8PnU4nsyeSJOHAgQNoampCS0sLfD6fbMzK/oZCYSO9S6fT6Orqgt/vV+Udb0t43pFe0r4IFKCHQiHmYFOpFHw+n2wp32DwjQjHyguCchsuPutJJBKyEiRf6vjzn/+MZ555hq1d4oVGeRPzITC5sAGna/8kOLFYjGULatjoXvCNPUpHMFzrtfqDLRff+FKqcszK/TwLzbee8JECK/GtX78emzZtwk9+8hPU1dWxTDWTyeCSSy7Bddddx06JUTZpqM0N5QMbP+3AZ9Y98Y5fF8gvY9AK7wYjlyMVm16vx8qVKzFv3jyYzWZWxSNn9OSTT+KDDz6Q8VxL2MiuKTEOxKbwSxF5e0n6NpT4NO1YeyK1qIq/2fxnqBzAL1Dn/68l4p0gCQo958LGv2+xWLB8+XKYTKas30okEti7dy86OjoKio+e+YdOp8PSpUvhdruxfv161vLPf1b5G1qjXNE+GeM333wTpaWliEQi7Dt8lkTfUzNu+SbeqM6cOZMZ4lgshs2bNyMejzN8/Pwb33hHeEYK7+hZTS6nTp0Kq9UKYGRh48fE25OGhgbs3r2b7a2r9j0tYOvL3HEu3tH3bDYbrrjiCkyePJn9ntpc81CS5hxrTzdRyWg+KunJcaqV8NSYMdzUV2y8QaXomO964z/PC4pwqjnj8ssvRzQaZXvSktDE43Hs27cPoVBoyPEOhm9Ad8lqyZIlqK2txdtvvy0bY6H5BvSs4LkMEO9YM5kM3nrrLVaCVHsG5A5N2bU4XKSGix/7jBkzcO6550IURXR1deH9999n8+eUqef6zULzbjBySQHrkiVLsGDBghFnT/jsjbcniUQC27Ztw/PPP6+6PSC9Vnsv3zrHP/PUF96RXFosFqxYsQIVFRWQJIk1O9Hv8ruCDRW+Xh2rIAjjADwHYAwACcBaSZIeFQTBDeB3ACYCOApgpSRJ3oEOhAeqZsT4CW3ls7KhiYgckVqmp3YDh0to+ouNyr78PFtP2GjsVOqg8h3tgUl/D0dn6VDw7bLLLsOyZcswbdo0xONx9j4fRRaCb2qY+oqPx8g3ppWWluLWW2+Fw+FAKpVCZWUly1BpLpl4t337dvzjH/9gpzYNJzYlTpI5pQySXPI6R8+03lNtyz961qrOjUZ7cskll2DRokWYMmUK49uRI0fw/PPPo6WlRcY/0jWt6ZyyQY7/f2+8yyWXNP50Og2fz4cnnngiK3MfLL6+ZKwpAHdIkvShIAh2ADsEQdgM4AsA3pYk6UeCINwN4G4A3xnwSHogZeSiNFzKejmfBallE8qSQSFLODwmq9UKl8sFs9nMBILfdaQ3bJTh8IY6EomwvVGHI1PNRTqdjnWP8nO/NE/Md/WdffbZ+NSnPgVJ6m5cUpZptMY3ZTmJ/1up5EpjYDKZMHv2bJSVlbH1kPF4XNaoFo/H0dXVhZaWFtYNnG9SM1Akk7RvLh800KEXOp0OyWQSHo8H4XBYc7wD+m5PaCtDs9nM/k/dzVrGRsu6pkyZgrlz57KpMJ/Ph+bmZuzYsQMAVG0mMHJ0jn9fyTu195V2hU7F2bdvX9bhLIOlXh2rJEknAZw89TooCMIBANUArgZw8amPPQvgXQyDY+VvYK6IhG6myWSC1WplpTRlhzDvcHJNzHO4hxpKr9iuvvpqrFixAm63GyaTSXbiBL+QXYmNDp2ORqOyBx3+/v777zPc1BU93OR0OnHvvfeivLwcFosla3E67eFpMpnYMVaZTIYZMUBejtQS33jqi1zSs5KId/F4HJFIhPHw4MGD+OUvf8mMd77xkcM0Go2ynYd0Oh0sFgt++tOfsiCBXwcqiiJsNht27NiBNWvWoKurS3O86489ufbaa7Fq1So4HA7WUb9nzx7NY6uvr8d//dd/weVysU0wvF4vHnroIXR0dPQok1rUOTUHOVid4+0l4R1KfP2aYxUEYSKA2QC2AhhzyukCQCu6S8Vq3/kKgK/0d2B8xMT9VtaN5aMTKlVR1sY7np463XJdrzcaamxerxdHjx6VbSigdEhq2Khrk5bdxONxeL1eHDx4ECdOnEAgEOh3NDZYbKIowu12o6KiAlarlW1dSIaYggbCSNgEQT5nzvNsqPg2GHwAUFtbC5fLBZPJhGAwiKamppxlRF7RZ8yYgQkTJsBgMCCTybCyLz3C4TD279+PxsZGdqxcIeSSmtzC4TBmzZolc6w6nQ5Op1OVd9RFHI/H0dbWJuuk1arOqdkT2oDA7XajqqpKpnMjAZvRaJSdhkV8o6oVL5OAfItGrelcrua9vvgCJT7eXiaTSTQ2NuLIkSOyRrzB4OOpz45VEIQSAC8DuE2SpIAirZaEHAt+JUlaC2Dtqd/IOVJl6UE5r6WMNPnSFP2PjrDihYLay/mdbJQt27kEpzcaamzvvPMOtmzZgkceeQTjxo1j2QIdMQdAFVskEkEoFEIoFEI0GkUoFMKhQ4fw7LPPZp10k09sysyHnCk5VjVswOnlRvwi9aHk22Dxff7zn8ecOXPgdDqxa9cu/OhHP2JyyZdG6T2gu/T95S9/Geeffz7i8TjbNCESibA1d21tbfjlL3+Jrq4u1WaKfPEuEAjgsccew8KFCzFnzpw+846vCg0X7/JhT2w2G6qrq+F2u7PsyUjAJopils5Fo1EW3AKnD7egcWtZ5/jAhjDyWNV8AY8PAOtfIHsZDAbx29/+Ftu3b2e9J4PFx1OfHKsgCAZ0O9V1kiS9curtNkEQqiRJOikIQhWA9ty/0HfigdGDDC7NBfDv040TRVGWuSWTSUQiERw9ehQbNmzAtm3bZAu8+ZuYL+oNGwnzhg0bsHfvXrabCj9PRwECYYzFYojFYojH4wiHw2yHqfb29qwu6Xxi4zMyPmLkI0xA7kzXr1+Pffv2sYXa/KOQfCN8tbW1mDx5MpxOJztjtKqqCtdffz1zNJTF8TvgkPE766yzkEwm2ZpVcqjBYBB//etf8fHHH7Odfwotl+l0Gk1NTfj1r3+NhQsXYv78+Tl5J0kSEokE/H4/fv/732P//v2yg6O1rHNq9mTMmDFYsWIFpk+fnmVPotGobEcwLWLjx0M6JwgCy9ioWYkcD1/V05rO8TZOp9Nh+fLlSKfTsvO3jUYjotEoW6ZH+ERRxOLFizFp0iSIooiWlhZs374dra2tOHnyJI4fP87wDzW+vnQFCwB+BeCAJEk/4/71GoAbAfzo1POrQzYqqAuNUoBIWAAwpeC7YSORCA4fPoynn36aKUOuTGCwEcpQYUun03jzzTdlXXA80fhJ+KnxhcemxFgIbJlMhjn8ZDLJytm5lD+VSmH9+vXYsmWLbBtDJbZC8m3ixIm4+OKLYbfb2TZ2lZWVWLVqlew4LsrSKSgirOFwWDaf6vf7EQwGmWPdu3evzKkWWi6bm5vx7LPPwmw2Y+7cuTl5R7zu7OzEunXr0NraKqsQaYF3/bEnlZWVuOaaayAIQpY9oQMh+MxOi9jIYQCQOVZlaVVpT7SmcxTQWCwWWK1WLFu2DFarFaWlpeyMarPZDI/Hg7/85S8Ih8OywOmzn/0s5s2bxxq3Nm/ejMOHD+PIkSPDiq8vGesFAK4HsEcQhIZT792Dbof6kiAINwFoArBywKOAHAQv5PQ+Rck8cD5jBcA2/Q4EAiwj6OrqkmVOfFmDfkNtDENJQ4GN3ldGmKQIWsPm8/nw6KOPyg5UplIUn4Xz3923bx87MUQL2JS/HY1G2UblFouFRc6ZTAY2mw3xeJw1avFHcpHRCgaDbB/gjz76CM8//zzD+8knn8iMoZbkcv369di9e3dO3lFmQZUSCqa0KJd90TnqpCc9G2n2JBaLoaurC4lEgjmkYDDIpsT439CaPVH+9s6dO9Hc3IzLLrsMEydORCaTYY2ONpuN4dPpdLjrrrvYum9qvHK73Th06BCefPJJtLS04Pjx46wqNJz4+tIV/DcAuVYiLxrU1dWvx15TOs+XC/nP8OsEaeP2QCDADFgoFGI3Ua2kwV8rX5Flf7Hx7/HZKD//ocqj5UMAACAASURBVEVsyWQSTU1NrBlE2YSl3KYM6HZAVquVbbCvFWx0nUgkwk7XkCQJRqMRkiSxszpprAaDQXbiBmUCJ06cQDgcRjAYxOHDh7Fjxw5ZyU0rvFPK5bFjx9Dc3CxbIsV/byTJZV90LhwOo6mpiQWEI82eRKNRNDc3o6SkhFVS/H4/K8+PBL7RdTweD3w+HxYsWICysjLE43GYTCZEIhHmWKnzecyY0/2zfDDb1taGbdu2saAoH/g0c7qN4nMATk9A891f/DO9nj59Om6++WZWiqPTDiKRCPbv349f/epXWdHJQNN9aQCnUQwGG3dd9kw4eMXQGraSkhKsXLkSpaWlKCkpkR2urNz3mEpPlBE+9dRT8Pv9ecHWH3zUDLJ06VKMGzcODocDZrMZJSUl7AQVs9nM5liJyLHSmauZTAbxeBx+v1+TvBvNctkXbEajEQ6HA0uXLsXSpUtHnD2h8SvXqQYCAdXx5ptv/cUniiKuuuoqlJeXY9OmTWy+lcenXKvKY6AN9vksdbjxaW5LQ6AboMAtu6AbRq8pOgMg+zsWi7HOWFqzSUcAqWUE+QwqBopN7fv8I1fkVWhsAJiD4XeS4pWB/x7fMs9HzlrBBoCVOJubm5FOp1FXV8dKTzTfza/tJOrs7ER7ezuamprQ3t6ued6NZrnsCzZa+tTR0QGPxzPi7Ek8HpedQDRS+caP7+TJkwiFQvB4PIjH41kBEqAtfJp0rABkgkKg+TZrIkHoPorsyJEjAE6XISkL4s/tpN8tNPUHG/8d5W8o39cStnQ6jUAgAAAIh8PMwfLdsvR5MlTJZBJ+v58d9q01bEC3fG3duhUlJSW4+uqrYbfbs/ApA4e//vWveO+997IUWmv4zgS57A82j8eDpqamoj0pMJHOjSR8mnWsRCQw9Frt/8lkkhlxSZJY9nDgwAF0dnZqSgl46gu23r7f18/mmxKJBHbt2iXbNaqn7cXIGdNB5lrGJkndGwU0NDSw0q/aInX67NGjR2WNaPS+2mst0GiWy/5go4YyvuxLTU25vl9IGu18G0n4NDnH2stvZL03btw4LFmyhP2dTqcRCoWwceNGRCKRIb2J0iDnRHoiNWx9GM9gL8v/1hmHDRjd+IrYeqYitqzxDPay/G+dkToHjEDHqkZmsxllZWWyUkEqlUJnZ2dWpjBYGk5FKDSdidiA0Y2viE3bdCZiA84AfKPBseaTzkRFGM3YgNGNr4hN23QmYgNGP758z7F2Agifeh4JVA75WCf08NkiNu1Qf7ABQAjAR8M3nCElJTbgzOVdEZt2qL86N5Lw9Vfn8puxAoAgCNslSZqX14sOkPo71iI2bVAR2+C/Uygq8m7gny8kjWa5HMg4xd4/UqQiFalIRSpSkfpKRcdapCIVqUhFKtIQUiEc69oCXHOg1N+xFrFpg4rYBv+dQlGRdwP/fCFpNMtlv8c5qDlWQRCWAXgUgA7A/y9J0o8G/GNFKlKRilSkIo0CGrBjFQRBB6ARwBIAzQC2AbhOkqT9Qze8IhWpSEUqUpFGFg1muc35AD6WJOkIAAiC8CKAqwHkdKyjee1SEZu26UxdU1fEpm06E7EBox/fYBxrNYDj3N/NABYoPyQIwlcAfGUQ19EsFbGNXBrN+IrYRiaNZmzA6MfH02BKwSsALJMk6T9P/X09gAWSJH2jh++M2iiliE3bdKZGz0VsgyNBEFBbWwuz2YxDhw4hmUwO6e+fiXwDRj++wWSsLQDGcX/XnHqv4KTcnFlrJzUMhorYRi6NZnyjERud9VlXVwen04ljx46p7j1OJ6+MRBqNfOOpUPgGk7Hq0d28tAjdDnUbgP+QJGlfD98ZMlRqJxv0dtqBEutAsOcjwixik9NwYjt1/VGLr4itb6SGo76+HtOnT0d5eTn0ej08Hg87J5iOkkulUohGo9iyZQtisVi/r3sm8u3U9Uc1vgFnrJIkpQRB+AaATehebvN0T051qCjXwba5XgOnbxp/+g2d7ae8oYIgwGQyIZPJIJFIDPn4e6LhxlZIGs3YgNGNr6/YRFGEw+Fg46dHOBxGMpkcMdgMBgNKSkpQU1ODKVOmsDOEXS4XO5eVzmlNJBIIBALQ6/UjAltPr4GRI5OAtvENahN+SZI2ANgwRGNRJbWbJJw6SDrXQxRP73tBisAruvJBn5MkCSaTCRdccAH8fj927NgxrMI0EGz0GAi2fNJoxjba8Q0Um8vlwi233AK73Y5MJoNkMolYLIYXXngBhw4dGjHYpkyZghtuuAElJSWwWq2y72cyGYYtkUggGo3CarXCaDQiGo1qHttIlcmRhi/fp9v0i/ibR89qTpR/FgQBOp0OJpMJ06dPh8FgYNFlKpVCKpVCLBbDoUOHkEgkkMlkZNcURRFWqxXxeLwg2GgMPWHjMwISFFJ45XtKyodCCIIAvV6Ps846CwaDAXq9HqIoQhRFGI1GpNNpfPLJJ0ilUiMOG+FTPveVd0ajEfX19Uwum5ub0dzcrBl8PelcbW0tHA4H9Ho9exCvBUGA3W5HXV0drFYry+bi8Tjq6+thNBpz6lyhsQHdfDOZTJg2bRqmTJmC8ePHw2g0wmAwyH6DstVEIoFEIgGj0YhkMgmdTgdRFDWLbSTL5GDxFcKmaNax8jdOzZGSINONo7/pvYqKCtx///1wu93Mmcbjcfj9frS2tuKBBx5AV1cXmyuhmyqKIvR6fZZCaQkbLyjpdJoJCb1WzgPlUyEIi9VqxbJly1BaWgqbzQar1Qqz2YySkhKEw2E8/PDD8Pv9Iwobj49/PVC5TCaTePbZZ/Hb3/5WE/h6wqbT6fD5z38e5557Lux2O0wmE0pKSpjzoSqRIAgskCWdu/7663vUuUJjIz653W7cfvvtGDNmDBwOBwwGA4xGI/ss8YXH5vP5mHPS6/WaxTZSZXIo8BXCpmjSsSqjEz4SoQdlQfxN5f9nNptRWlrKhCUejyMWi0EURcRiMfZ9upF0LQDQ6/XQ6XSaxUaCws/1EAa1KIwvhQwn8dgo87fb7bDb7bBarbBYLLDb7TAYDDCZTDAajSMGmxIf0DvvJkyYgOXLl7Psju5JdXU1TCYT0uk0LrroIpSUlCASiSAQCOD1119HKBQqKO+U2GbOnImZM2di6tSpcLvdqo61J+cDANFoNKfOFRIbzzeDwcBshhJbOBzGH//4RwSDQaRSKSQSCSSTSUQiEQSDQSQSCU1jU7Mner0eV1xxBaZNm5Ylk1arFRs3bsSxY8dGlM71xV7S83DaFM051p5KUXwUQs6Pv6kUnZBjdTgccDgcTMnNZjMAIBwOw2AwQKfTyW4e3VRijJawKYWIyk6pVIqVuXU6HRMYXnBIkHgBGm5soijCZrPBZrMxx2q1WuF0OiEIQk7HSrgkSWLYaIkDYSFFIeIjzOHMCpTPPfHOaDRi8uTJ+OpXvwqz2cyw8eNNpVL49Kc/jblz58Lv96OlpQXvvvuubK4uH/hyYSOezJo1C9dccw2cTidMJhMcDgdzrHypH4BMzkwmE3Os4XCY3RstYFPjm8lkgt1uh8vlysIWj8fxxhtvoLW1VSaXyWSSzblqGZvSnuj1ehiNRnzuc5/DwoULs2TyvPPOw8GDB9Ha2irL5vKFbbD4erMpSl3kg/ehsJeacqxqis07Oor8yXDRnJ0y7SfHyt9YSZJYidJisbDf4m+aJElIJBJ47733hnwheF+wkXCQ08+FrbS0FN/61rfgcDiYUieTSYTDYdalGI/HEQgEEA6HEYlEEAqFEAgE8Oc//xmRSGTYsel0OuZUHQ4HrFYr+1uSJFgsFlZB4LGREmQyGRYokCKQsCuVnG86GA7qL+/Kyspw5513ora2FlarVRbESZLE5BEATCYTBEFAIpGAxWJhxjxf+HrCNmnSJKxcuRK1tbVwOp1ZmSoFDITN5/PhkUceQVVVFb70pS/JsNF90Ao2Nb5RMG6z2WAymWR8I300mUyakMvB2pOrrroKy5cvx7Rp09h7vEwCwJe//GVccskl+N///V94vV5N61xP9rInm2Kz2bB69WoYjUYEAgFEIhGEw+FB20tNOVYgu57Op/zKCIWPUkRRRElJCRwOB5sv8fl8zJiR8wkGg/D7/QBOlxX4MnA6nUZrayuAoRcaJTa1kgYfPPDYADDMRqMREyZMQGlpqQxbKBRiS4QSiQS6uroQCAQQDAbh8/nQ2dk5bMsC1LAZjUb2SKVS8Pv9yGQyCAaDMqHnsfG/Q6VTs9ksazyj0n4oFEIoFMoax3AZsr7yzmKxYN68eRg7dizDyJej+HlG4h0v12pyOZz4lNh0Oh1KS0tRU1OD8847jzlU4iUtR+vs7GTjlSQJXq8XTU1NMiPIZ0fl5eWQJAnxeJzxkx6hUGhYqin94RsZaT5TFQQBXq8XnZ2dACDTR+B0xsMH74XiW0/YDAYDk0edTof6+nqWqZKNBMAcj16vR1VVFZLJJJtDzye2/uArLy+HxWJhjlWn0yEcDiMajTIZdLlcACCbXkokErDb7Tj33HNhNpuH1F5qxrEqGaZM+3U6HRN43vnwk9NXX301rrvuOqTTaXR1deH73/8+vF4vm5wmJU4kEgiFQjJhocdwRpdKbMpgoSdsgiAwY9zR0YG77roLgiAglUqx0kUymYTD4cBdd90Fs9nMjASvGPnEZjab2Tzrxo0bsWnTJpbF0P1XYlMq79VXX42VK1ciEokgkUjA5/MhGo3C5/Nh/fr12LBhw7DxrTd8uXhHckrz9HxXemdnJ+6991622QAZ5m9/+9sYO3asLDovlFw6nU7ceuutqK6uZhkcPWjecefOnXjooYdkjqW0tBR33XUXxowZw4w16W15eTn++7//G+FwGD6fD8FgEKFQCF1dXejs7MQf/vAHhMPhYcfWX74lEgn89Kc/xfbt2xEIBLJ+k7IhpWPVmj0pLy/H//zP/7DNLqxWK5LJJJNBGjvfW7J27Vps3bo1r7ayr/iIV0ajEbfddhvmzZsHk8nEHO66devwwgsvQJIkOBwOrFmzBmVlZdDpdCx7jUQiDH88Hh9Se6kZx6oktWhF+QC6s0qn04mpU6eyrccos+no6EBHR4estVo5b5eL8tl0oGZMaQyU5dTU1KC6uhqCICAej+PQoUOIxWKq2Gi+IFeUmQ9slJGSoCYSCXi9Xia0en236KlF/Hzpxmq1ory8nDlWvV6PSCQCURRhsViy8OS7oYK/z6Ioor6+HrW1tTAYDGwOnOdPJBJBW1ubTC5FUUQymWS/oaR84iPj6na74XK5soxNKpXC9u3bsWfPHrS2trKSmiB0z0+VlJTAZrNlZUJ6vR5ut5tN0VDgSGtd+VLkcGKj5550jucbBUMdHR0yuVTiU6N8860nbDSFVFZWxnDEYjEcPHgQ4XAY06dPh9lshiAIOHbsGI4ePYpjx46x6kohsanhEwQB48aNQ11dHSZOnIjKykrWaCaKIquq0NgcDgdKS0thMBgYjyORCJLJJLxeL2s+o+ucPHkSJ06cYElZf0mTjpV3BGqREkVLlM7X1dXhgQceAAD4/X6k02kEg0HE43G24wsZcH4ehBSDf+QDW28BA4+N6DOf+QxWr16NdDrNMlaKoJXYlMaep+HEyGOjjNVisbDsORc2nviyKWHinS+PbbjxKKk33ul0Otx0001YuHAhRFFEIpFgmSoFc6FQCPF4nOGneR/6Td5g50sm1bBZLBbGO3oYDAZ4PB6sWbMG7e3tWcsS4vE4IpEIotFozt8vtFz2pnOUpRLfyPEnEgmZXPbFnuSDBovtF7/4BZqamvDII49gzJgxAIANGzbgmWeeYbazUNh6w7d06VL853/+J8tUldtMko4NRC63bNmCAwcO9JqA5SJNOlYitRtKRA0wV1xxBSZPnpyVvZEA5Yq2lAaM/18+KFcGDgBLly5FTU0NcyrJZBLTpk1je5EajUZcddVVrHxB36UF6xaLhX23sbERO3fuRDgcRjwex5QpU1jZuL29HR0dHcOGTRRFtLa24s0338T+/d3H9CrvNW+cP/vZz8LlcuHtt99mDQM8jwjTiRMn8MYbb+DAgQOy38oX8TyrqanBpZdeypxPdXU1CxzouaGhAbt27QIA1hhBuOfOnYs5c+bgrLPOYu9pRS4ps+Q7KPmNVnjeUTZLD+pK5w27crkDv6Yw39jUdG7q1KnQ6XTMkZIjSiaTDI8aad2e0PhoySHJZENDA5qamhjGo0ePYsuWLfjwww8Zb7SALRc+Kg3zFaHm5ma89dZb2LlzJ1KpFD772c9iypQpMBgMfZLLxsZGfPjhh6yiNFDSvGPlBUQZvZSUlOBf//Vf4XK5EIlEZEoai8VkGRyRUlDUKJ/KwL+mEunixYtx/vnnsyYPwkIlUL1ejyuvvBIGgwE2m419NxqNIplMoquri5U5Ghsb8dZbbyGdTsNiseCyyy6D0WhELBZj87XDhU2n06GlpQW/+93v2N/KNn2+bH3hhRdiwoQJeP/99xGJRFgmxwt+JpPByZMn8cc//jGrczvfii6KIqqrq7Fq1SqUlJSwbspUKsWqJZFIBFu3bsWLL76Y1dmo0+kwZ84c3HjjjYhGozh58mSPDTz5lEsq1fKOlXeqfCVBkiSWMSgdK72vtjCfgiVlN+1wY+Nf0xgXLVqEBQsWIB6PIxqNMp3jqw18ZYFIy/aE/qb7zmP74IMP8MILL0AURVRUVCCRSKCpqQnPPPOMjK9awUaY6Fkpl0B3ZnrkyBE8/fTTTCYvvPBCzJkzJ8uxqskl2cvNmzez3xwoPk07ViKKTP4fe18e31Z15f992ldL8u44q1OHLCYhcRIKpeyELRBaCA3DPrSBD6XtFEoZpgxThq3tlBYoS+FTCi1l+QVmBggNS5pAO0kJtRNCFrI4ix3b8SZbsvb9/f5wzs19T0/eJb0Ync9HH8mypHe/76z33HPP5QXnhhtuwLx586DX6yXT/lQqhTfffBP79+9HIBBgN1EefSilgfMhJDy2ZcuW4aKLLkJNTQ0ikQgikQgrtuK/J0/3Em4q2nrsscfgdruZsebx8YqSrZkCKTUVgvBpW368NI6zzjoLZ555JmbMmMHaHM6ZMwe33HILJk+eLJkp8en9fPCN8BUVFWH16tWYOXOmZCsNKW8kEsG+ffvw8ssvo729nSk6PZTw8Q4n36k3vkIZAMNGM3E+ACBs5HiU5JJ4R60AqRp606ZNOHTo0KhOhhkNNhqf3J5Qyleuc6IoYtWqVTjzzDPxhz/8gRXyyAMgNdoTGpcgDBQHhsNhGI1GxGIxtnao0WgQDAbx+OOPS3igJmxyfLNnz8a3v/1t1NTUpOkc7Zs+88wzmU0ZzF6SXO7fvx8vvfQS09Wx4lOtYx0sDazRaFBbW4uTTz6Z5c7dbjcT+H379mHfvn0oLi5mRTIAWGqOZoHhcBi9vb0A8hd58diqq6uxZMmStLW5VCqFcDjMysepcEev18NsNjNBCIfD6Orqwueff46enh6WwuINIFXCkQHJFjbg+DprWVkZw+n1eiVrNwBgt9tRXV2NWCwGv9+P4uJiTJs2DUuXLoUgHF93TCQS6O3tRX9/vwRTLonwabVaTJo0CaWlpZLqbT7N3tLSgs8++0zCAyriUcLHzxSI8iGXqVQKXq8XdrsdJSUlbBz8bJMfH42Rn0lQMZKcd8FgkGVU/H4/WltbWV/aXGCT65zVaoXD4WDtCJV0zuFwAIBkexj9Fv2vq6tLok9qsCf8WHgHlEqlYDKZUFpaytYnKXNVXl7O5NjtdivO3PKlc4TN4XCgvr6e2T6abXZ3d7P9trxNcbvdMJvNsNlssNlsinLZ1taGnTt3jrpYSU6qcawUVcjTGfwzvaYIjCLnvXv34oknnmA3JBKJwOVy4dFHH0V5eTmMRiNbrPf7/axiePv27Xjqqafyik3ps3zuXxRF6HQ6bNy4EWvXrmWboflexqQINBvwer3sfZ4ikQg++ugj9r/xaIKRCRtFiHV1dXjiiSfYWvAjjzyCzz77TDK+DRs24O9//ztrrnDvvfdi0qRJbK2Yutv09fXh0UcfZSnTXFAmfD6fD7/4xS+wZMkS3Hfffeyzojiwn/Ohhx5CV1eX5Pu0JeWRRx7B5MmT0/DJgyC1YeOXWnhnys8G+KInfi2WeNfT04NoNMqcmHwfcraxyWn58uVYtWoVqyLNpHMAWCtUXva+853vYNKkSbjnnnvQ29ubV77JSWktkbBdfvnluOSSS1i1N3VBI77FYjH8x3/8BxoaGnIexA6Fj+SNPptKpdJ0jrcpZC8XL16M+++/X1L1nS2bohrHmomUBEaegkokEvB6vezG0F67iooKVFZWsvw6FffQrM1ut0t+L9c0lHPl17oqKirYaT2JRAL79u1jBoqUhmbjmQw0zWrl72eLaMZKJ6LQdpRkMok9e/awdBul4KibT3l5OUpKSliXHpr9JJNJeL1eVg2dL77RtT0eD2t2wb+fTCbZ/4DjqdF58+ahpqYGU6dOhcvlYvgEQcD+/ftx4MABRKPRvM3G5dhoKYV/n3eo/DOt/fOtKkkfCVtXVxfLWOS6cIlIrnNWqxWlpaWsnkEQBvZYHzhwAIcPH4bH42F4+ELBKVOmYPLkyZg6dSpsNpuknaFa7Ik8bctvc5L3QqaOUnRaTzQaxZw5cxCJRPD555+z2Xg+dc5gMGD+/PnsjFwiJZ3jbQrxLhgMStbJs2lTVOlY5dEKr8z8NB4A2ytJN1qrHTgyzmQywW63w2q1QqPRsGIEfj0rl0UTQxG/JkJjomjLZDLhm9/8JlatWgWdTofe3l7cdttt6O7ultyPfG3VUCJeifmOSjfccAM6Oztx1113obe3V5JaJb7RXki+OIHnW76x8UTBD8kmPeRrXTqdDrfffju+9rWvpXXUisViePnll7Fp0yZWVKYWfHxnpUzYBuOdmrFl0rmWlhb8/Oc/RyqVYgdGyHl80UUX4YYbbmBpRDXKJXC8By4A1uqVHkajkckidRjide66667DWWedhTvuuAOhUCjv2BwOB+68805UVVVJWtUOJZd8e0Oj0ShZIsuWTVGlYyWSrxlQdM//j5wPXxjCG3S+kwh/4zLNFrNNckxy5ebTIBQ0mM1mZrho8zMvQEop83zQYGs89Mxv4eCLXajSed68eawtpdL380mD8Y6e+dQoYTj11FNx+umno7a2lm3C50keLOaDhpJL/jNy3mXSua1bt2Lz5s3shJR80XB1LhwO47333sOhQ4eYrJJclpWVsdNt+N+l38kXDSWTWq0W5557Lmpra1FUVMS24/H2JBQK4Y033kBJSQkuvvhi9n0lXc41KdkUPsDhP5NJLouKivCNb3wDs2fPlmwd27hxI3bt2pWVwjlVO1YlohkCveZbkQFIc7B8Rxe58VLqcpNLkgutfFZGHW/4CFMQBNYTc6j16HxSphQi/Y+vOKVI8tJLL8UZZ5yRxi81zQSIhsJHcgkAp59+Or773e+mGT0eH8mrGvg3EmzER77HLqWBP/vsM7z44ouIRqOqwAVkTpcCA0fbvfvuuyyTwsvlrFmzsHHjRoTDYbZlg/8uL8/5Ijk2CgzOPfdcLFmyhKVE5fakv78fa9aswcyZM7Fs2bIht9jki/gZNZA+Ucokl06nE9dddx3Kysok27w+/vhjbN68eWI7Vj4yyfQQRRHnnXceLrjgAsycORPAwA2cP38+nn76aaxbtw4ffPABi5qpMCSZTCIajbKtGnz13mARUa6xrV+/Hrt372ZNo7/3ve/BYrGkHcvFt8kDlI2f/JFrbABYkQC1IuTX3UhJBEHA5ZdfjssuuwyzZ89mVXkUZNCmduKbUieubGEbDB/PNyoCI3wOhwP33nsvAMBisaCmpgYAJCknHl8sFsPVV1+N+vp6PPvss/B6vaqQy6GwWa1WSW9dg8EAi8UiqWpXm1zK8ckrnTPJpcViwb//+78zWSwpKWGvzWYzbrvtNuzevRuvv/66JLOWT2xkK2lbCt9DWMme7Nq1C3fccQfOPvtsnHnmmarTOQCsIC4ajUpsykjkkmwK+YFsyKVqHKsS0cyGCj10Oh1qamqwaNEiSRrA5XJh2rRpOHToELZv3y45SYPftE4CREqk1+tRXFwMv9+PYDCYNqPIBpnNZlgsFhgMBgiCIGmz1d7ejqNHj0Kr1aK0tBRdXV0ABhbiaTZAe1WdTicrM+f3cVH1Mzm0YDCYF2z8aRLkYOn6Go2GNQPXarWYM2cOTj/9dMlsnb5DD6/Xi97eXsmaEVEusMmvR3Jpt9slXXko0zB//nx2vqfBYGCY+PVwvpkC9UOmta584eMNC+nPUNhILgkbbWPj06by384XNrk9MZlMTOYGk8tUKoUFCxYwvoVCIdaURqfTYc6cOQiFQmlGOZ/YampqsHDhwrSUKRHJIQCUlJSgp6cHBw4cQE1NDTo6OuDz+fKuc8O1KcORS3kDE4fDgeLiYom95BuCUNX6hHOswMAex7vvvhulpaXspBTq20kVwdSX9bLLLsOFF17IIkaj0chSN/yCNX33K1/5Cn784x/j/fffx4cffpgTPF/96ldxzjnnwOFwIBwO45lnnoHP50ubdXq9Xtx3332SQheaiRcXF+POO+9kBw7EYjFEo1F2Hiv1Sfb5fPjggw+wfv36nGOjbRfUCID2GGs0Gtjtdtx///2sOtHhcEgaD/DbT+j7L7zwAhoaGiR7WPNJdrsdP/rRj1BVVSWZZctnAjTjI2wnAj4+Vc2Pf7jYGhsb8dBDDzEs8kc+ifhWVlYGs9nM7Mlo5JL2eCrNdNSGDcjMN5vNhv/8z/9kTuett97CHXfcwaqD8ymTg9kUmq2OROfotSiKuPnmm7Fy5UqJvaS9y16vFx6PB//93/89qi1hqnSs5eXlKC8vh8lkgsvlQmlpKVwuFywWC2tFxS9CU/RiMplgtVqZAvM3k4/aKLURjUbRxMGa+QAAIABJREFU1tYmKbXOtgCZTCY4nU44HA62HsBHjoIgMOa73W6msHxlmygOnOhTUlLC9q9Go1GYTCbEYjHo9XpEo1G23SUf2Oi6ZIh40mg0cDgcMBgMsNls0Ol0EufEP2jMPp8PXq83Y+/nXCo+Rb9tbW0IBoNoa2uTrO2bTCbMnz+fLUfw0b0cX2trKw4ePIjW1lZV4JMvL5Cu0ft8K7hM2KLRKLq7u5n+DeZUc42NZM/pdMJisTAeEbaRyiUwdGOGfGNrampCNBqVyGRbWxvb86nX63HSSSexGR4AuN1uFjzkUyb9fj86OjpQUlLCmnGQXNJrYHhySbaotbUVhw4dQjgcZg36KbtH23T8fj98Pt+ot4Op0rEuXrwYl1xyCeu/arFYWJRIUQo5GEoH8Af0EvEpAH6mSo8jR47g6aefTusElE2BISdJ1+EbA1DKhcZKRo0MG/0vGo1KAgr6H18dDRwvzsonNtpfy5fH82XxtOme5xufKuVxK20nyhU2nkRRRH9/P55++mlJoEb4y8rK8OSTT8JoNA6J7y9/+Qsr8FEDPl4mSecAsH2act7Rvmr590nv5M5IDdjoeTzkktc5klM1YQOAl156CW1tbRKZfPvtt/GnP/0JgiCgoqICzzzzDEpKSiTdmdTAt61bt2LHjh246667UFJSwmSTr9sYiVymUimmcxQ40DO/VMjb5NGQqhxrSUkJTjnlFMyYMYPdKOoWFI/HJWlRjUYDm82G5cuXo6ioSCIISusB8qgyU/SZbWpqasK6detgMpkQj8cVjzKSzxpEUcTChQuxePFiCIIAi8UCi8UC4HhRCQBs3LgRzc3NrAF/KBTC3r1784LNbrfj4osvZoJPfEmlBs5B3LBhA6LRKNtnRgbKarVi+fLlMJvNDJvSTEANxI9NXmDBR8+UBpevS9G9ke+nVgs+3hjx+AgTH/jx35k8eTJuvvlmfPrpp2hsbFQdNvla92ByqdPpcOGFF2Ly5MkSvsnlcixGeDyJx/b5559j9+7daGtrS5NJch40IaGx84GxGvhG+rF582Z0dHQo2hRBENJ4t2TJEixZsgTAwIlSa9euRSAQQDKZZKf3yAOITMHEaEhVjrW4uBhnn3027HY7U9ZQKIR169alVUpqNAOnMpx99tmw2WxsrVVp/yM/oyCi9YSx3sCRkCAIaGpqwsGDB1mQQM0tlCrv+PcWLVqEm266Kc0488Zu48aN2LJlC0vB8am4XGMrLS3F17/+dZjNZkl1qCiK8Pl8ePPNN+H1ehl2ij6Jp2azOS0Y4vmUS74RvkwkN0D8zIacj1wueYcqx8S/zhXvlIh3rBQcAFDExvOouroaN954IyKRCBoaGlSHjecR6VkqlUIgEEiTS6PRiHnz5qG6ulqic0rVqjw/c42NcBC+VCqFzz//HG+++SYryuL5likIkNsXNeicKIrYsmULDhw4MGybotVqUV9fD0EY6KS1Zs0adHd3pzUGyha+IR2rIAhTAPwRQAUAEcDzoig+IQhCMYD/B2A6gGYAV4ui6BntQJRKnuVde3hnQ4JP1bLyk1SA49EXCREZM4/Hg6eeegqtra0SAcuW0PAKyL8uKirCLbfcAqfTKcHAOxudTgeDwYBp06ZlxLZ+/Xq8++672LdvX0Ycucbm9/vx7LPPssifDx6SySQ7JUTeMIL2Q/Iz8UzOJ9vYBsMn/z8vlzTTIRxKcrlnzx4899xzOHz4MMOQa3xDYSMZlOMgPvGZBhofLdEozdDVgo1vZMHjkOvfcO2J1+vFU089hZaWlrzYE41Gg6uuugqzZ8+G3W6X4OOxyHmZSefyyTclfKOxKXyKHzje30DOn2zhG86MNQHgLlEUtwmCYAewVRCE9QBuArBBFMWfCYLwrwD+FcA9ox4JBqK+/v5+tnFZOFasQyXk8qYCJSUlrBcknyLmbyZ/c1KpgVM7Ojs7sWvXLtY0O19pDq1Wi6qqKpSUlMBoNKKoqIh1HRIEgZWMG41GVhBC3ystLWUnM+zfvx8NDQ1pM/B8YovH49i7d69iMMQrBB84Eb96e3uh0+lYL2eqXCwuLmZ70Lxeb97Tirzy07PL5UJZWRnjnZLz0Wg06O/vR0NDQ1pvYDXwjrDwfCEcoijC6/WydnEU/KVSKZZxkKdI6Vkt2JQCOnIwdGgHH9hStyy5PSHHGolEsHv3brjd7rxgEwQB06dPx5w5c1g3JcLGOyav18taNIbDYQiCgOLiYpSXl0Or1SIej7MTiNTIt+HYFJPJhOLiYthsNslOBLlMZhvfkI5VFMUOAB3HXvsFQdgDoBrACgBnH/vYHwB8jDE61tbWVvzud79j55JqNAOngdx3333Qagd65vLRlU6nQ3l5OQwGA1NyvsqPX4ym8xafffZZNDY2sqb9mW5qLgSIThEhBV61ahVWrlzJlIIwmUwmrF27FmvWrIEgCCgtLcUjjzyCQ4cO4YEHHkBfX5+k4CRT0UEusckjaiVjxjtWmg14vV7ce++9WLhwIX784x+z8vnrr78eK1asgMfjwe7du/G73/0ub9gy4dPpdPj+97+P+vp6VFRUsC43ZLiJJ1RUwa/zqYV3vCEmQ2U0GpnOeTwePPLII/B4PJJKdV4uXS5XWiWmGrARJsoCES7CZjab8dhjj0EQBMnaPx0iwVcI80dPhsNh9n6+sJHzIDw8z7RaLQKBAB588EFmI6nA54c//CEWL14Mq9WKrVu3qtqeDMemLFq0CD/96U/hdDphNpuRSqUkbURp7NnGN6I1VkEQpgNYCOBTABXHnC4AdGIgVaz0ndUAVg/n9xOJBHw+H9s7JorHS8ipe4Zer2ezVD5qNhgMaGtrQ3t7O1KpFCshp0jsyJEjaGpqwpEjR9Db2yuZ3QFIex7m/Rg2Np7oGpRGImU/cOAAGhsbWRqDlFuv16OpqQlutxvAQOTW0NCAtrY2dHZ2SvbaKS285wMbfy357Id3rLxzBQZkwO12w+v1SppdGI1GWK1WVpww2PXyhU+j0aC4uBgVFRWS2Rzxk4zxtm3bsGfPnmEVTeSad/y1yWnyzsdisaC2thZHjhzB/v37MW3aNEybNg2iKLJsi3wtTy3YgIFDAXbt2oVgMIiTTz5Zgk2r1bKzWSnjQHzjg6BEIoEjR47g4MGD8Pl8cLvdLPOQD2yy35DULPBrrz6fj8nqjBkzMH36dEyfPh3FxcVsy15XV5dk18F48W0s+JScXSabYjabMWnSJFa7Im8/qVSwNF74eBq2YxUEwQbgvwH8iyiKPtnUWhQEQXEUoig+D+D5Y7+RcaQ8GCqB5isStVotizL52anJZGKKsHHjRjz33HMQRRGlpaX4zW9+A6fTiUgkgvfee49ta5B3+Ml0Y4ei0WATxfR2Z/T3Rx99hL/97W+sFzApNv2fZuMej4dt6Oa7hZABUCM2eUqRP4KLXych/sdiMTYbCAQCCAQC7DV1vOHxjQRbtvDRTMdisbAZA3XYAgZmqP39/XjwwQdx9OhR1fNOo9Gk6ZzdbsdDDz2ELVu24Mc//jEuv/xyrF69mnX9orahkUhE0tpQLdh8Ph+efPJJnHbaaVi0aFGaPcnEN3nmi+wJYaQte/nAxl+Ln5ErpboJ02WXXYZbb72VySDxh+9MNJ58Gwu+TDrHYyN8pH+UAaM+wPIOfNnAx9OwHKsgCHoMONVXRFH8n2NvdwmCUCWKYocgCFUAukc1AhmJooj9+/dDFEVYLBY4nU5cdtllbB2Hv9mhUAhr1qxBOByGTqdDY2Mj25NEaRq3240///nP+Mc//sGUQMko54LkikDMBI5vcAbAKpyJ6DU5H35GoNSuUY3Y5O/zm/IpeOKxtbS04He/+x1qamowffp05lCDwSBMJhMWL16M1tZWtLe3qwYfIE1TAccLXZLJJNauXYvdu3ejr6+PzcTVzLvW1la89NJLOO2003DqqadKgqPp06dj9erVWLRoEeMZbR9rbm7GunXr2Lq/2rAlk0m0tLQwbEuWLFHk2z/+8Q80NjYyuxGLxZhjbWhokDilfGOLxWLsQVmDRYsWsXaA5HgIY319PVKpgf2u/f39eOONN/DFF18wTPnmmxyfks6R3SBf8a1vfQtz585lPKb7wveIz5XODacqWADwAoA9oij+ivvXOwBuBPCzY89vj9egmpqacODAAeh0OpSVleGss86C1WqVlImTY33llVfQ09MjMWwUQdKBxb///e8lXUSUopKxRigjISWBkQuPIAiS7Q1ENH4SDn5z80TC1tzcjH379mH58uUoKSmB3+9HOBxGKBSCyWRCfX09EokE2tracoZtOPj4iJrw0kzn3XffxaZNm04Y3rW1teEPf/gDu9/8LG7KlCn49re/zbCRUQ+FQjh48KDqdU6OjecVGdpPPvkEzz33XJrOUdZLTXyje0+HdiSTSZxyyin46le/KsnqUWDE883j8eCVV15hy0pqwsZfM9MDAGw2G6655hpUVFQwx0qBAwVE9OD382YL33BmrF8DcD2AnYIgbD/23r9hwKGuEQThFgAtAK4e9SggBcEb33g8jr6+PtbI3GKxsMbMfr8fkUgE0WhU8hvJZBLd3d148MEHEQgEmCLIp/10LaUxjCdlwkbv8/vP6D1+VifHxs9YSVAmKjafz4fu7m74fD5Eo1H4/X5JqjGb2EaKTxAEBINB+Hw+5oQEQWApe5LXE4F3fPCzdu1a7Ny5E7feeivmzp3LDDRwfD841Ub4/X42I+d766oJG3Ccb2vXrsWOHTvYbI7fb9za2iqxHWrlGwC89dZb+PTTT3HttdeyDkVWq5XZSnKsvEwS37q7uxEKhdjMLp/YlPBlkkv63A033IAFCxZAo9Gw9rT5xjecquBNADLtjj9vTFdXvh57TcLc1dWFZDKJcDjMBMVsNqO/v5+lLvgog9I227ZtYzdwqDW5XEWWPDZ+XxU5Gl7xeaPNY6Po+cuALRKJIBgMIhwOs2021Bw8FovlNGoeDJ/JZEJRURHi8TiCwSDi8Tib3fEzOj4NpWbe8d2Vjhw5go6ODpx77rlwOBwoKyuTOFY+aOjo6EBPT4+qsfF8O3LkCNra2iRd3fjvnQg6J4oiurq6mCMxmUySE5VEUYROp5PIpM/ng9/vRyAQQFdXF5upqgWb/DpKcglAUjBIjhM4LpednZ1oa2vLOT4hVzcJGHzBWvY5AMcNMFUbylsaiqIoaZQsn87TzeOn/EqfHQmJoqgYZIwGm7yyjX/mq/m+zNi++tWv4tRTT2WNsdetW8eKl2hWNBZs44Vv2bJlOP/881FeXg6z2cwOWADA0r6PPfYYduzYccLyzul0oqKiAnfffTdriE6zuEAgAI/Hg2eeeQa9vb2Sk21OBGwnss5pNBqcf/75mDp1KiorK9nJNhaLhR1qzh8CDgB//vOf8d5777HJCx0AkQtsI8UHjE4u4/E4nn/+eezevTvn+FTV0pCIpvwkxPJ2hrwC8BVj/Pf5R6boJJdBBT82vvyb8PBpjgK249j6+vpw4MABdjaiz+djlX65psHwAWD7BamYjqinpwfd3d3o6+uTbPM60XhHKd7GxkbYbDYAYMaKimC6u7sRCAROOGwnss6Josjuvd/vh16vZ0VL9KDKWaJ9+/ahs7NT1djoumORy5aWFknjjlzhU+WMVfadtNdK7wHKN4e/iZk+MxIaa4Qp+07a6+FiUxKIiYhN/rnRYhyP6Fn2HcnrM844A1/72tfYlga+mfnHH3+MTZs2SQwY/Y8b30iHIKFc8Y4PbpX4JsdI74+F1CiXmT4zUhovbMQTej3Y82A8ygW2Y2PJiVzmQ+cAlc5YeeKNaybHOdT3h/vZXFMB2+Dfp2e1YQPS8VGfWHkbOQBobm6WFGvRd5Req4EG491wxnqiYsv0Xqb/qwkbP6Pjx6U0Ax/sN5Req4VOJLlU/YxV4TdG/J3xxDie0bPCb4xmPGO9LP9bXzpswMTGV8A2OBWwpY1nrJflf+tLqXPACTBjlZMaI6nxogK2E5cmMr4CthOTJjI2QN34NEN/pEAFKlCBClSgAg2Xcj1jdQMIHns+EagU0rFOG+SzBWzqoZFgA4AAgH3ZG864khwb8OXlXQGbemikOnci4RupzuV2jRUABEFoFEVxcU4vOkoa6VgL2NRBBWxj/06+qMC70X8+nzSR5XI04yykggtUoAIVqEAFGkcqONYCFahABSpQgcaR8uFYn8/DNUdLIx1rAZs6qIBt7N/JFxV4N/rP55MmslyOeJxjWmMVBOEiAE8A0AL4nSiKPxv1jxWoQAUqUIEKNAFo1I5VEAQtgP0ALgDQBqABwDWiKH4xfsMrUIEKVKACFejEorFst1kK4IAoiocAQBCE1wGsAJDRsY5Ht418UzY7peSbvozYgImNr4BN3fRlxAZMfHxjcazVAFq5v9sAnCr/kCAIqwGsHsN1VEsFbCcuTWR8BWwnJk1kbMDEx8fTWFLBVwG4SBTFbx/7+3oAp4qieMcg35mwUUoBm7rpyxo9F7Cpm76M2ICJj28sM9Z2AFO4vycfe69A40h2ux3Tpk1jp6YAQDweR1NT07AP+S5QgQpUoALljsbiWBsA1AqCMAMDDnUVgH8al1GNkeSnHqi5WfNgJAgCioqKcPLJJ0Or1TJcoVAIzc3N7NBs/vNyOpGwTxS+ZaKJjK+A7cSkiYwNyB++UTtWURQTgiDcAeADDGy3+b0oirvHbWRDkJITyXSM0FjO8MsHCYIAk8mEr33ta3A6nXA6ndBoNOxhMBig0+nSzv1cvHgxSkpKkEwmkUqlkEwmcfjwYTQ3N+cPjIwmMt+AiY2vgE36fgGbOkiN+MbUhF8UxXUA1o3TWIZFSqfIK73WaDQoKipiB/+Gw2FEIhHJAdryQ4HzTTwGnU6HKVOmoKioCHq9HlqtljlWQRBQXFwMo9EoOeC4uroalZWViMfjiEaj8Pv9MBqNeUR0nCYy3wDAaDTCaDQiHA5LDjXPhBU4rsw8HjXi48et0Whgt9slB7rzxsrn8yGVSqkWmyAIMJvNkrFnekQiEUQikQnBt+G8Bk4cbIC65VL157EqCcFwlMLpdOL222+H3W5HKpXC+vXr8Ze//IU5Iv4BQPJaDdgMBgOqq6tRXFwMs9kMnU4HvV7PxlpbW8tmpvF4HPF4HKIoIpVKIRgMorm5GRs2bEA0Gs2LUkxkvinhW7BgARYtWoT3338f7e3tg2KkcZOiZ3rkC99gvCsqKsLNN98Mp9MJk8nEgj4A8Pl8eOaZZ+D1elWLzWw247zzzoPNZoPBYGDZH8JCumYymbBx40b89a9/nRB8G+qhdmxD4VObXKrasfI3j57pNUUm8mdBEKDVamEymTBlyhQ4HA4kk0nMnTsX/f39aGpqQn9/P7vBqVQq7bq5EJpM2ARBwIwZM1BVVYXS0lI4HA5YLBbo9XrmWIko3RuLxRCLxRAMBhEMBnHgwAF0dXUhHA6zaCzX2HQ6HSZNmgS9Xg+dTidJY2s0Guh0Omi1Wuj1esYzijprampgsVhUyTfCJ3+2Wq0oLy+HyWSSZBbkcklBDm/EUqmU5LUa5RIY0Dm9Xo/KykqUlpamyaXH44HRaIRer1ctNsqIFBUVwWQywWQywWg0MiwWiwUGgwEWiwUnn3wy4vG4pHDQ6/Vi7969DJeasMmfy8rKUFpaOqTOxeNxfPHFF4hGo6rkWyZ8cntJ9l4ul8FgEEuXLkUwGEQymUQymUQikUAikUAkEkFTUxNisdi44lOtY+UVmr+JJOQkFGSs+FSpVquF3W7H9OnT4XK5kEwmUVVVhYsuuggPPvggtm3bxgp/kslkzoVmMGxarRZXXnklFixYAIfDAaPRCJvNBr1eD4PBwD5LY08mk4hEIohGo/B6vejq6sKGDRvQ19cHjUaTN2wWiwUXXXQRXC4XrFYrLBYLTCYTbDYbjEYj7HY7w2YwGKDX66HRaNhvEDY18Y3Hx7+miLmsrAxWqxUGgyGjXPKOlTIOFCClUinVyiUfsNKSg1wu3W437HY7IpGIarGRbXA6nbDZbDCbzTCZTLDb7TAYDCgqKmJyWVtbi+uvv57JZSqVQkNDA37yk58gkUioDhv/WhAELF26FBdeeOGQOud2u/H9738fPT09quPbYPhGYi9PPvlklt2LRqOIRCLo7+9HZ2cnHnzwQfT19Y0rPlU6Vnl0wkf/9KBZEO9g6f3ly5fjpJNOwqRJk2A0GpFMJvHFF1/gk08+gdvthk6nS4vE+HRIPrHpdDoUFRXB5XJJlJyM9QcffACPx4MrrrgCdrudOdZIJAIACIfDzIBrNJqcYxMEAXPnzkVVVRVcLhfsdjvsdjssFgvMZjNTbjk2iqKJyLHSrOKSSy5BXV0dgsEgjh49ir/97W9IJpM5wwYA1dXVqKqqgslkglarZbMzk8mEuXPnpqWheLkk3pJjJcNFxksQBMUZQj7k0mQyYcmSJbBarTCZTCxlajKZUFRUhKqqKjgcDthsNmzfvh07duxgOK+55hoAA1vCaFYQCoUQj8cRDAbZ8/79+7Fv376cY9NoNDCbzbDZbKOSy7q6Otxxxx3YsmULGhoaVMU3YMCelJeXY+nSpairq4PT6RwSm9FoxLe//W3GH55vPp8P7777LgKBQM6xZcJHfKyrq0NdXR1mzZqlaC8z2RSylxqNBpFIhPmS8cSnOsc62JSfj/wprSF3sAaDAStWrMDpp5/OIo9EIoGDBw/irbfeQjweh06nYzeQv3l8pJINoRkuNpvNBqfTKREUMsqbN2/G4cOHcdVVV8HpdCKRSMBoNMJkMkEQBASDQXZvco2NZgR1dXWYOXMm7HY7mw1YLBZYLBYWVfLY+HQxP1Ye24UXXohwOAyPx4PGxkZ88sknOcdWXV2N+vp6WK1WNgMwmUws/UROiMcjd6wU7IiiiEQiwZSdcORbLsnxnHHGGZKlCJ53ZLhsNhuamprw+uuvQ6fTobKyEi+++CJKS0tZmi0ajaK/v5/xLhQKwev14t1338WBAwckhV650DmNRgOr1Qqr1Qq73Q6z2SxxrDabTZJZ4TMpqVQKc+bMQW1tLVKpFLZv387ezzff6Fmr1aKqqgrLly+HzWYbls45HA7cdNNNAJDGt/b2dvz1r39FNBrNKbZM+Hh7WVdXhyuvvFJRLikVzM92CZ/cXtJnxxOfqhyr/AbK0768M6VZAa0fyB0uvUc3hdZSNBoNm/LTMxG/eJ0vbEajkSk9CYrRaMSHH36IDz/8EIcPH4bRaIRWq2WL80ajEYIgIBaLwWw2M6XJNbY5c+Zg7ty5mDp1KsNAsxyLxcLe45WAjBcFAqIoSvjGY6PnuXPn4l/+5V/wf//3f/jkk0+yig0ASktLUV9fj7KyMphMJuZE5fhMJhNzunK5FARB4lhTqRS0Wi1zrGqQS41Gg/POOw8zZsxAWVkZbDZbGu/C4TCeeOIJZpCOHj0Kk8kEnU43qFzyz9FoFEuXLkVFRQXef/99tLW15UzntFotw1JUVIR//OMfaGxsZBjMZjNbh7z88stx6aWXKsqlGu2J3W7HypUrMXnyZDgcDkkAMVqdq6iowN13342dO3fij3/8IxKJRNaxZcInt5dmsxkOh0NRLvnPOZ1O/OAHP0BRUVHO8KnKsQLK+XR5Cpge/IyVX5+TT+X5tBxFIiRI8oiGH8d4C81wsGm1WgSDQfj9frhcLuYk+/v70dzcDLPZjNLSUiYYHo+HVQUHAgH4fD6GL9fYzGYzq2LWarUIhUJIJBJsbY4cDik38ZHGSqkYfr2Dr9ykyNJqtaK6upopSrawESaHw4HJkydLqrNpDYdPk5Jx5nGRXJLD4Xmi0WiYQ+aLKWgdiN6jRyAQkGwZGA9sfKGVTqfDtGnTWPEYj422EvX29mLHjh3w+Xxp2ACgt7eXjZHkkhwVFZP4/X7o9XpUVFRItoPlSud4vnk8HuzZs4eNr7Kykumhz+eTjIm3J3a7HZWVlXC73QiHw6qwJ3q9HrNmzUJ5eTmblZHO6XQ6+P1+ltWjAi4lbMlkktlWi8WC+fPnI5FIoLS0FD6fD4FAIOvYlPDJ7WU8HmcFjX6/XyKXlOrX6XQoLS1lXepyhU81jlUujJnSv3LHyheE0DMtTtN7FJnR76VSqTRFoEc2o8vhYNNoNHjhhRfw4Ycf4te//jUsFgsA4PLLL8d5553H1hXNZjO2bt2KRx99FPF4HMlkUuJg5fu5coFt9+7dOHToEK699loYDAa8/PLLiEQiMBqNWLVqFb71rW/BarWyYIGMMV+p53a78ZOf/AS9vb1IJBJYtWoVVq5cySpNdTodWlpa8POf/5wZvmxhM5lMOOecc9heYgoIzGYzM1wWiwV2u52tR1LAIJdLChTkhnfFihW4+uqrEQqFEIvF4PV6EQ6H4fV64ff7EQgE0NfXB7fbjTfffBPBYHBcsfEFPGazGRUVFSxIkGN78sknsXPnTiZfcmw9PT24++67IQgCK+4BgDvvvBPz5s2T8I4CB7/fPy545DSYzvHY+GCotLQUv/zlL1FaWsqMLq05UrBA9uSyyy7DWWedhfvvvx8NDQ2qsSdyvtHD5/Ph/vvvh9frhSiKuO6663DNNdcoYgPAgiHSudmzZ+P+++/H2rVrsW7duqxhGwofby8/+ugjNDY2shkoL5eXX345rrnmGom9jEajOcOnGseqRJnSAfJZqbySKx6PIxaLATg+c+P3L2UipTROtigTNo1GgylTpmDGjBlshp1IJKDX61FUVIS9e/ey/Vj79+9HZ2cnq9qTr9nlGlssFpM4kGAwiEAgAIPBgMOHD2Pr1q2SWR8pyqRJk1BdXc0KJrq6utDT04NUKsWKJoCB9ZFdu3Zhz5496OvrS0vbjDc2UkgqVuIf/MxVr9ejs7MTfX19LGMgl0ve8PLpYIvFgtLSUuZYdTodQqEQMyBarRbxeJwVW4z3bJzSvFTEQ4HDrUrpAAAgAElEQVQBj40efr8ffX190OkGzAaPrba2FiaTCU1NTYhEIgwfzSwIdyKRYFkWCqaIclVcR/e4ra0NXV1dkvddLhdKSkoYjygAoLGRnvIz+kyUa3tCGOR8o8xCb28v3G43UqkU+vv7M2Lj7STxzWAwsGxUrrHROHicVHhEtpFP+86aNQs1NTVwOBxpFc25wqdKx6qUAlCKBFOpFHOgRKIoIhgMwufzMQMIHJ8V8esgdIOHcri5xKbVanHLLbfgtNNOg0ajYc4qkUggHo/jmWeewdatW9nvkQEjjGrARsrN4/roo4+wadMm5jCIRFHE9ddfj+uuuw7JZBKBQADRaJTxlapmASAQCODxxx9HR0fHsAKl8cDDp+j5zILBYGCFLyaTCZs2bcIbb7zBjJhcLol44yXHxwdX9MzTeAcNw8VGDwpQ5di0Wi1WrlyJadOm4e6772bBBa0j89gIR750jmZ1bW1teOqpp5g8kj2hfeGkc7zN4O0J4eNT8/m2J4SN5xtfgJVIJBjvQqEQ+vv7M2Ijkssk4cwVjdQX1NTU4IEHHgCAvOJTpWMlUrqJRPKIIpVK4eSTT0ZdXR1KSkpY9N/W1obNmzdj27ZtaZ9XUoJcK0QmbCQo9EwKH41G2QxAifKNTRRFNDY2oqmpiXV94oWfHwe9F41GEQqFAByf9VZXV+P888/HggULGA5+e0q2sU2fPh3FxcVp1YLySl8+UCB8vILymRR+1jplyhRFfPz+QR6v0t668aDhYFMyOnKdKysrY46IxlpfX49FixZh0qRJEhz51LlIJIL33nuPZUJ4PIFAAC+//DJrTkI4zjzzTFRVVUmCdAoy5Ftt1ICtqKhIsjRB9Q4+nw+VlZX4+te/jtraWqZzANKwkc7KZTIf2AjfYPbSbDZj+fLlmDlzJlsG5DN3Q+E7evQo/vznP2PPnj3jgk/VjhWQ5tv5Gyovh06lUpg9eza++c1vspkeALS0tODFF1+UGPWhZju5VAb+NZ+2TiQSLFVDG+5p1koFQZkccj6xiaKIrVu3Siq0M/GNPh+LxVj6k4oMqqurcf3117OtUXKnmk1sgiBg2rRpEmPK/0++3sM7HiW5pNd8kZoSPjLUckMmd9DZokzYaOZMhoj/e86cOUznPB6PJOV2yimn4MYbb0Q4HEY8Hs8J74aiSCSC999/n1Xg83zz+Xx47bXX0lL4U6dORUlJCYDjzUv4lGK+dS4TNr6ojLDMnj0bK1euhCiKTOf4wk/CRtXOSjKZD2w0Pv41X3hns9lwxRVXwOl0sn7dtBQxHHwdHR343//937SjOEeLT9WOlU9xyKNmXiH4SJHfT8bffKVoS+mRT2zLli3DRRddhJqaGraJmU/fkKCQwaPvnwjYaFw832bOnImrr74akyZNYnyz2+2466674HA4JGt5SrPVbGIb7BryKm55oRKNWf5djUYDp9OJ2267DTNmzEjDR8EUtaikIIqc1XjizOQQlLDRZ1OpFIqKinDLLbfAarUikUigqqqK8Y7kk09jy7FRT2s1y6V8bPRanjIcLA2sNmzEt6qqKonzkNtKHpuSTGZDFkeLj+xlIpFgy0/hcFiyVDFcfOMtl6p1rEp5dZ54gZZ/j4+8M6VM5d/NhxLIsVVXV2PJkiWSNR7a4kBEvUsBpK3B8ZRvbFqtFsXFxazAgz9PFhgoRKqursaCBQsQiUTgdrtZpV5dXR3rucs7AHkqOZvYKD0di8VgMBgkBler1SKRSKCiokISMZeVlUnw8SSKIoxGI0pKSnDKKaegvLw8DZ88BRwKheDxeNgWgPF2rMFgkO2bBpS3NPBpM4fDgYqKCtTV1cHhcEj66ArCwNp6SUkJW1+3Wq3sniUSCfT29qK/vz+j7maTRmNPqKiLZraUUaECIFqekf+G/HW2aTjYdDod5s6dC5fLlcY3Oc95mSS+BYNB9PX1IRQK5c2pym3KrFmzJPZSPlMdDj6lpZbxwKcax0pRhXy6Lyde0eXKQHscabGetkTIZ61K31UDNvosP0PYu3cvnnzyScb4aDQKAKwakd5XGzaHw4F/+7d/Q0VFheToO5qFUSsxvV6PdevWYe3atdDr9SgrK8PPfvYzuFwutr+T0ojy4qxsYvrss88kaWy+IthgMKCsrAwPPPAAO+Ju+fLlWLZsmQQfL5f8gxqjy/HRenosFkMikcCWLVuwfv165mjD4fC4YYxEIvj4448xdepULFu2TLKhnt8Oxc8Ubr31VoTDYZhMJmaseVx2ux0///nPIQiCpIFCKjWwN/nRRx9lhWfZpvGwJ5dccgmuvPJKdkSj0WjE9u3b8ctf/pJlEtxut2p0bjBs/HqwnG9kK+lUH14miW89PT2SWoh84JPbFIfDkWYvR4qPdI6vjh4PUo1jzURK0Zd8qq7T6WC1Wlk7Mr1ej0QigZ07d+LAgQND/kauIzCiwZxrLBbDzp07sXfvXng8HiZs8+fPh81mw759+5iTlX9XDdg0Gg2Ki4tRVlaGoqIiVnFK68Y0dq1Wi4qKCsyZMwd6vR7FxcWSRvYUfSphyiY2eTqJT3HSjGzHjh0IBoOszaHD4VDERxE235uVnDSPjxTd5/Nh9+7daG1tlZwjOZ4OSRQHzrrlC8woAKVtTcXFxaivr2ffoRaAg2FzOp3sfdr2tn//fnbiEr8dKR80HHvidDpx0kknYc6cOeyEJuIbALjdbmaYY7GYanQu0yy8trYWkydPlsjdcGUymUzC6/Wir6+PbZHKFynZFMJJ9nGk+EjnLBYL5s6di6NHj6Krq2vMY1W9Y+WJz4/zkbTNZsNXvvIVVFdXw+l0QqfTobe3F48//ji6urokAq+0RqcG4tdERFFEf38/nnrqKbjdbkmq7fbbb0dtbS1uu+02dHd3p6VK1YKN1oLla5D8LI46Mn3zm9/EqlWrMnbTkqdI840NGOge9Jvf/AannXYaFi9ePCg+vnEEzQr5dUj+FJFkMonm5mb89re/TSukyBaRQeI7f/3mN7/B7Nmzx4wtFovh5ZdfxqZNm9gsPt+8I8pkT+bMmYOHH36YVdby2OiQdODEsCcAcN1117EAaaQyqSadG4lNGanOTZ48GbfeeiveeecdrFu3bsxjVaVjla8V8IIMHF9bpM9MmjQJV1xxBerq6libNvnZpfLfyhcpYZs8eTIuvvhitvWC1uyuvPJKxGIxptwGgwG1tbUsxSbHpDZsRHxgwwcJdLA0n7IPhUKswxC/nYP/nVzQ1KlTYTAY0NLSwtZL5fhEUcSRI0fw0ksvYfHixVi4cOGQ+JTW/QlXOBzGe++9h6amprS+s9kkpe01qVRqzNi2bt2KzZs348iRI3k1ysO1JxaLBcuXL8fs2bNZ9kuObcaMGbj99tuxefNmbNmyRXU6x2NbtGgRFi1ahKlTpzJHNFKZNJlMuPTSS7F//3787W9/yy04jI9NGQwfXSPT50ZLqnSsPGUCSjfTYDBg0qRJuOyyyySFBtQEXWkdIt/KQETjqK6uxnXXXSfZM2m1WnHVVVexvp4UgQmCgO7ubtVjA45H9OQkqMRdFEW2/sFHl4IgoL+/H2vWrEFnZydisRhuvvlmzJs3j90XviI6WyQIA/tMi4qK0N7enlaIRJ8BgKNHj+KPf/wjtFot5s+fz3BSIZYcH90XIH1dnBxrT09Pzp0qb1zo/o4V22effYYXX3yRpZvVQJnGodEMHIB+1VVXoaqqijVZkGObMWMGVq9ejVgsxo6NUxs24uUpp5yC66+/nq0fjkYmzWYzLr74YpSXl2Pz5s05WR8fjEZjU4DjzXOU9lLzSyF8YDkWUo1j5SOTTA+KTuiGOp1OfP/738fMmTOZIwXAKmqVyuEHux7/v/E0bMPBxTeJJqbKewifSNgCgQB+/etfs6PUaPxarRZOpxPf+973YLFYhsRG7fzi8TjMZjNuu+027N69G6+//jqTh2xhGwyfnH/r16/H3r17cf3112PWrFkZeccXWySTSdbXmoqe5NWMueAdpdZonLzBGQs2eUGIGuRSyZ4IgoAbbrgBdXV1cLlcw8J21llnoaqqCs8//zz27NmjKmy1tbX453/+Z0ybNk2y93S0MgkMZHC++93v4u9//zu2bNmSNWyD4RutTfF4PPjVr37F2qCeffbZOPPMMyX46LoLFy5EaWkp3n//fbS2to4an2ocqxIpRYMWiwU2mw0ajQZlZWU45ZRTUFlZyf4viiJrWu50OpFKpdgpCHzDb6Xflkdv2SJBENgslKop5Yd2i6IIj8cDnU6HSCTCKjWpEpGPwHjSaDRwuVwQxYECqGAwiGAwmDNshC+ZTKK9vT3tpBeNRoOSkhL09PQAQBq2vr4+Cd/MZjNztoIgoLKykvV35a833tj4gxyU8Mllp729HZ2dnTjrrLNQXFzMlD8SicDlcsHhcEiiZVrfoYfX62Unw+RSLqkRPhVzCMJAB59M2EpLS1FZWSkZo3wmQNhMJhPKysrYfux4PI5wOIy+vr6cYJMTzzeDwQCXy8XW3+bOnYuTTz4ZBoNBERttOyF+2e12LFq0CFOmTEFXVxcz0lRhmkwm4ff72f7IXGDTarVwuVyYMmUKFi5cyHSKDyCGwzd68AGuyWRCVVUVbDYbux79Ri5IEATE43Hs2rWLzSxtNhvzBUPZlIMHD7ICrLq6OoaPeleHw2EEAgFotVp2OtBYggZVO1ZAmksXRRHLli3DN77xDaYQNpuNKS0wYCh+9atf4dChQ7jzzjtZI+ZXX32VdVXJd6GBIAhYtWoV5s2bx/bKUXRPFWsejwePPvoo+vv7JetftGGfP56LT43YbDb84Ac/gMVigc/nwwcffID169fnHKPdbsePfvQjlJWVsWPkCIfP58N//dd/MYPOYysuLpbwjZQDGOgV/Nhjj6GzszOrvBNFETt27IBGo5FUB8s/Q8/0SCaTeO655yQFLxqNBjfeeCOuu+46ZsT47UN0ItELL7yAhoYGyT7PXFBHRwdef/11dv/JoPCFRjy2SZMm4eGHH0ZFRQXTOb47D4/tggsuQH19PYLBIGKxGPx+Pz7//HM89dRTOcMnJ7q3J510Eu68805W8ELyxnc447G53W7cfffd6OnpQTwexxVXXIHLL78cN910E1auXAm/349oNAqfz4dwOIxgMIjXX38dBw8ezBk20rmqqqo0ewIgIzYlmSSdI2fc3NyMJ598Mu1ItVzSYL5grDaFKr2pWGusOFXtWPkb6XA4UFtbixkzZsDlcjFDTUqfTCbR1taGjo4OHDp0CL29vXA4HNBqtdi/fz88Hg/7rUxONVfOVhAGipNcLhfbdyufqSQSCfT09MDj8bBoVBCkh2XLsVCKnH5Xoxloyp1LbHQt4kcwGJQUEWg0Gvj9fnR1dcHv96dhI16XlJRI+iPT73q93rRmCdnARg5VaXbK329A2iPY5/PB7/dL9sD6fD6JoeMfPT09TG69Xm/Gk4myxTt+xkpFf5QyFAQhDZvRaJQYIH7mIsdGZwebTCbEYjF2QlOusMmJ51soFMLhw4cxdepUVFdXpx1hKMcWi8XQ09OD7u5uxONxdnwfn3mKRqNMvjs7OxGNRvOic1qtFmVlZRK5pbVIJWyRSATbt29HNBplOhePxzFp0iRWBW0ymVBdXY2Ojg7WJCKXAaCSzvX29uLQoUPjYlO8Xq9kb+tYiwdV71gJ5PTp03HPPfew/XHkRGhNKhKJ4O2338af/vQnCIKA0tJSpFIpNDU14Z577mEN7eWL10qONtsCw1+T36RMTpOUhGYzfJqOX1fk7w+Pjf4vXzPLBTa6Rn9/P55++mkIgvS4P3nTATm2aDTKcJAzou/xePLBN/46dN9p3HTfabzUU5dmvXx6lU+7bdu2DevWrUNra2ve5XI42CjlSWvflOpXwibnHcmBGrDt27cPDzzwAK699lqsWrVK0Z7w2EgX+XNm5diAAZn+7LPPsHbtWsVjDbOJjXSuvr4e9913H8M0FDa3242HHnqIbd+jcd97772YP38+NBoNpk+fju9+97t4++238c4770iumwtSkssNGzbgo48+UqVNUbVjBQCz2YwLLrgAX/nKVyRKScJNBozfd8WfNqLkTInylQrmr09YeAOWyfnLZ05yOvfcczF16lTWGYdfI8kH8U6en/mRs1XCFgqF8Prrr6O2thbnnHPOoDNGNZI8XcXzWL4updVq4fP50N7enuZ41Ui8caMHZU8EYeD83bVr18LpdCryjtfbfBMf1NLrUCiEDRs2IBqNShoK0DYwedchOTb5rD0flEql0N7ejtdeew0LFy7E/PnzFW3l9u3bsXPnToaNskDEV8LEYwOAGTNm4Nxzz8W2bdskrVbzQbw8DWZTgONZJb44dOPGjdizZ09W2jQO6VgFQZgC4I8AKgCIAJ4XRfEJQRCKAfw/ANMBNAO4WhRFz1gHJDeiVO5dVlbGbiRfDk1RCPWL5IkXdPqbnpUMYLZJzmjeeZJxImxK/5dvM+HHrdFocM4552D+/PlsMZ7/jVxik5M8mOGjSTm2UCiEN954A0uXLsV5553HPit3SrnkGzA2fPK0Er0WBAF+vx9Hjx5lkXS+5VJOSthI58hQUyAbCASwZs0a1NTUKPJOKVjMNg2FjQIFGv+bb74Jr9fLZj7y1o6AdIsSj43uS751rqOjA2vWrIFOp2Nb1Xj90Wq1aGhowKuvvirBJpc/It4eTZ8+cJxic3Nz1h3reNkU+W/S73700Uf45JNP2JrzeMrlcGasCQB3iaK4TRAEO4CtgiCsB3ATgA2iKP5MEIR/BfCvAO4Z7UDkMxr+pvLdNmgNiARCq9Xi0KFDePXVV9He3s4UPRQK4dFHH2VrIURKzpX/XzYUQo5NFEW89dZbaGhowOrVq1kbOB4bKbR84758n1UqlcKyZctw7rnnorKyUrJGQunvXGJTqmjl08FKeyaVsMkVfrAOMNk00uOFTy7PgHRGrwa5HA42kk25HhLJ8fK8o4pZNWH761//igMHDuCmm25CcXHxkDp30kkn4aabbkJFRUUatoMHD+K1115DR0eHarA1NTVJeEfr6B0dHRntCY2dgg7entDrE0Hn6Jn2t/KzVaUglqex4hvSsYqi2AGg49hrvyAIewBUA1gB4OxjH/sDgI8xBsc6GCndLKqO9Xq9aGtrw9atWwEcbyCQSCSwY8cOSVojU5ouH6m35uZmBAIBSdTPY9Pr9azsmyJnUgpaw6NqvtraWtTX16O/v5/NVEnhaTtPMBgc9xZ5Go0GFotFsj+Oxg4AwWBQEi3zCkHKwBf5EE6HwwGn0ymZDXg8Hsk2o3zxjSceFz0r4QuHw3C73SgqKmL8jEaj7NQQNcnlcLDxvOaLCAkzFfoYDAZWgUkzOaUlmWyTyWRiRYKAVC47OzvhdrtZUE5YM8nl9OnTsXTpUsTjcVbsE4/H4fF4cPToUXzxxReKDUVyRTy/qM80FfBQxblOp4PdbkdlZaWiPaGAXKvVMr7x6f9kMgmj0QiLxZL1024G4x3hHMqmyLMLwWAQbrc7rc/zeMrliNZYBUGYDmAhgE8BVBxzugDQiYFU8bgTCbXBYIDRaJREHx6PBw8//DB6enokM1g58ekBEoxM65j8d7JNg2Ezm8147LHHIAjSBtI0TkrFxeNxCMJAQUI4HJY8QqEQZs+ejbKyMlYgM57YzGYzLr30UrhcLjidTlitVtjtdubIH3/8cfh8voyRJK8ExDeXy4VHHnkE5eXlAMBOivntb3+LxsZGeDyevPMNSO9yMxi+devWYdOmTfjpT3+KhQsXsgMiHnjgAfT19alOLgfDRgdeUB9dkstUKgWTyQRBELBr1y6sXr0aV1xxBZYvXy6RSaqUzSW2M844AxdccEFGuRQEAb///e+h0+kQDAaZDg5HLsPhMLq6uvDLX/4SXV1dGQO/fPBtxYoVuOqqq6DT6eDxeHD//ffD6/VCq9Vi5cqVuPbaaxXtCfEqlUql2RPi4ZIlSzBz5kx88MEHWT3xZijeDcem8JRKpfDOO+/g5ZdfRl9fX9Z0btiOVRAEG4D/BvAvoij6+Om5KIqiIAiKVxcEYTWA1SMdGA+GX+/gnQ8VfwQCAckNBaTrOfKq2UxbVeTXHYqyjY0O+6bIn2biVEVMXVKosILKyOkRi8Wg0WiYARxvbIIwUIZvNpthtVpRVFQEu90Oh8MBi8WCBQsWIBwOs5Nq+GYR8mdKkRcVFaGiogI2mw3RaBRHjhxBU1MTWlpa0Nvbm5YOHg3fhotPiZSuR9Ew74j4qJlvkEA4o9Eourq6JBWLapHLwbBRRoJkkpdLwhaJRNDf38+2GfFyyTdMyBU2ags6lFzG43Hs3buX8Ume5na5XLDb7QxHPB7H/v37cejQIXR3d8Pn86mCb06nE3PnzsVJJ52Eqqoq1kzh9NNPh9/vZ2uvtN9Vbk+MRiMMBgP6+vrS7AlVRlPrQHmadqz4dDodKisr2RFvVVVVjHd8R6WhdI5ez507F9OmTYNer0dfXx87MYz2I4+XzqXhGOYN0WPAqb4iiuL/HHu7SxCEKlEUOwRBqALQrfRdURSfB/D8sd/JOFJ5Oky+bsPP7OjUAlIOShOQgSbjSykoevApKb5zUaYbOxRlExtt1icjxgcM9KAtD1TVFwgEWAcR2qQeDocRiUTSKv3GAxt/j+XbEWw2G374wx/CaDTCbrczfISNP1iAsJEDIsMViUTw3nvvsX6z/DrrWPg2XHz8byrxTr4WJE/l0//k644kf2qWy0zY9Ho9LBYLO9qPxwRAgisSiaTJZSgUUkwJZxvbcOTS7XbjjjvuYEU5vD0hbLzO+f1+/OlPf0JjYyMLGNTAt5NOOgkPP/wwLBYL0zO73Y6HHnqI6RxhG409oVnrSLtKDQef0WjEWWedBZfLBZfLhaKiorSCsOHqnE6nw3e+8x0sXboU0WgUmzdvxl133cVsyXjqnJyGUxUsAHgBwB5RFH/F/esdADcC+Nmx57dHNQIZyafjxHA+uqCiDxIM6rFK79MMlTdafJuufK31jAQbRWGAtKCAosZQKIRoNMoUgB6hUAjBYBCRSASRSAQtLS04fPgwvF5vVjCRU6Wolq6r0WgQj8fZ+g4JvLwwi78vfNs7whYOh1k0nS++8WOU8w9AWpk/X2nKV3nTzI1SahSIqE0uB8PG81Iul1qtFitWrIDX60UwGERNTQ38fn+aXOYa2/79+wEA55xzDiZPnjyoXJIcajQaLF68GPX19YjFYswZBYNBBAIBNDY2oqGhAa2trUw21cI3fqsPb094naPxjtSekEPlZXw8KR6PY+fOnTCbzTCbzZgzZw7mzJmDSCQCrVaLSy+9FMlkElarFTt27MCuXbsgiiIsFgu+9a1vsRaHRJWVlejv78cbb7yBL774go0/2zo3nBnr1wBcD2CnIAjbj733bxhwqGsEQbgFQAuAq8dtVJAKDTGfbyhN/+MNLhFFIGS06LvkaJWikvGY/o8UWyqVkggrpaR4BeEdLn0+FosxRSDDFQgE4Pf72VoIrf+0tLSwwq7xxsY7Q3KqfAcaanrB842fCclxUtUhjZ+KsdTCN/6amR5kyORVlnQ/yLHyTc7Vgm842PjMh5x3Op0Oy5cvRzQaRX9/P5NJkstAIJDWKjEX2JqamnDo0CHMmjULxcXFrFF7JrkEBvi2cOFC3HLLLawlo9frRSgUgs/nQ0NDA1577TXV8m00OjeYPSH95tPB2dhWFIvFsHPnTjZmo9GIGTNmIBqNwmw246KLLoLFYoHL5QIAfPHFFxCEgU5211xzDSoqKtiafyqVQjAYxNGjR/HKK6+wE7Ny4QuGUxW8CUCmRPp5o75y+nXYa944xeNx9PX1wWAwIJVKsaKJ1157DXv27EFPTw9rP0e/IZ+x8k6Zn/bTtZTGMJ6UCZvX68UTTzwhOZSXUtv8/kD+d+LxOCwWC66++moYDAa2xhwIBODz+ZhydHZ24pNPPpG0cswGkVOlmQ1VRJrNZqRSKVgsFsY3s9nMjBqlEQVBYM7F5/OxnrL79+/HK6+8gra2trQUMN1Hpfs73pSJd/S+fNZNn+OjeZoZud1udHZ2wu/3s4bgfPSvFrkcDBu1QKT1NSXeUc9cXi77+/vx/vvvw+12S66RK2wA8NZbb+HTTz/Ftddei5KSkjS51Gq1uPvuu5kMV1VVoaenBz6fD729vXj22WfZumN7e3ve5HIovkUiEfT19SEWi41I55T4RvaEP2WKDwazjS8cDjMbJrcpp556KmbNmgWTyQSLxQJBGDh2Uo6vu7ubBQe58gWq67xEgChaMRgM6OnpQSo10BnFarXCaDRi69at7KQD/nsUrZGRpxs41LpOriJLIooW+dMaKFXDN3BXwma327F06VJYLBb4/X5WvBQIBBCNRhEOh9HT08MOmM4WNuKJcGyLBV07Ho/DZDIhEonAZDIxvlF6h9aPiUgJaPyBQAAHDx7Etm3bJJFxvvgmv04qJW1SIl+/lvOOjFssFmOGKxaLwWq1snUrNcmlEjYA7DQRWm8Djrf6I8NMPPT7/exkpXA4DL/fj5aWFvj9/pzP5ghXc3MzvF4v2tvbkUqlYDAYmGEVxYFtKHPmzGGzu3g8zno/9/X1YevWraxZuxrtiVarZVtTqIk8j42Ksggb8S0SiaCjowORSCSjPaHaB96m8lvFsoUvFoshHA7DaDSyMRiNRoRCIZSUlGDevHnMvnd1dbHv8jalq6uLzVRz5QuEXBkmYPAFednnoNFocP7556O4uBibNm1CNBqVOJ9AIMD66BLJp/N08/gpP59K5p+HS6IoKs7eR4INOF4YwVe28c/0WgkbpT4ASNYK+AgsmUwiHA5nFRsFP/Jx8+Xu8qBBaV8Zzxt6UDox23wbDJ8SXmDkvLvwwgtxwQUXsN6sZLh6enrY+ZZql0udTofVq1ejrq4OpaWlLJtCM7rlXQ0AACAASURBVJdAIIBEIsGq0yndTY/+/n78z//8z6iM8Xhi02gGDjSvra3FP/3TP7EMGBX5UCGkHFtvby9+8YtfwOPxqNae2Gw2XH311SgvL0dlZSUrXhoKm8fjwTPPPMOquJXsCQBFrIMdNDAeOnfKKadg4cKFLDD94IMP2HrrhRdeiPPOOw8vv/wyDhw4kNGm0LGM8iYz2bQpqpuxAsdvSn9/P1KpFEu/yBUeUG57xefNeQcrv4G5DCr4sQnC8dZbhIde04wBGBxbb29v3rGJoph2dqe8mlT+OFH5RtcdDe8oXUcNQWgGQCn/sSp4LrABQGdnJ8xmM5qbm9n35F2VaFZDaTf6mxxvvrElk0l4vV50dnZi165dLCtGW2/45RceW39/P6uuV5Nc8tgAsOCNT9/SPnj+sARaZwyHw/B6vejr64PX61UVNgDw+XxobW2F0WhELBZDb28v8wUHDhyAy+VCS0sLOjo6VGVTVDlj5T4vERreYPOfIZJjycY0f6wRpuw7aa8L2HKL7dhYsorv61//Os444wxJER0tBTQ0NGDr1q0nBO/4x7FryscgeT3Y3yOhbGCTY5E/K2HjH/z7Y6HxxGaz2bBixQrW4YsO+6ZtKBQ08NmheDyO/v5+vPrqq5I0PX1uLDReOqckc0qyqCabosoZKxEfPdPfSp8Z6jeG+9lcUwHb4N8f7mfzQSPBd/jwYcU9uMlkEkePHlUdvkzYhjtONfNOPjMHlLMng31f6bUaKBaL4fPPP5d0xFJaegGO21ZqCiHfBqUmbEq8kvsGem+o3xnuZ8dKqp6xZviNEX9nPDGOZ4Sp8BujGc9YL8v/1pcOGzCx8RWwDU4FbGnjGetl+d/6UuocoPIZqxKpKZIabypgO3FpIuMrYDsxaSJjA9SNL/3AugIVqEAFKlCBCjRqyvWM1Q0geOz5RKBSSMc6bZDPFrCph0aCDQACAPZlbzjjSnJswJeXdwVs6qGR6tyJhG+kOpfbNVYAEAShURTFxTm96ChppGMtYFMHFbCN/Tv5ogLvRv/5fNJElsvRjLOQCi5QgQpUoAIVaByp4FgLVKACFahABRpHGpNjFQThIkEQ9gmCcEAQhH8d5teeH8s1c0wjHWsBmzqogG3s38kXFXg3+s/nkyayXI54nKNeYxUEQQtgP4ALALQBaABwjSiKX4zqBwtUoAIVqEAFmgA0lhnrUgAHRFE8JIpiDMDrAFaMz7AKVKACFahABToxaSzbbaoBtHJ/twE4dbAvjEe3jXxTNjul5Ju+jNiAiY2vgE3d9GXEBkx8fFnfxyoIwmoAq7N9nXxQAduJSxMZXwHbiUkTGRsw8fHxNJY11tMA/FQUxQuP/X0vAIii+Ogg35mwUUoBm7rpyxo9F7Cpm76M2ICJj28sM9YGALWCIMwA0A5gFYB/GsPvjRvJmzOruafkSOnLgG2wcxVPZPoy8I6ogO3EoImMDcgfvlE7VlEUE4Ig3AHgAwBaAL8XRXH3uI1sCFIyvplOOxjO+ZFqoi8zNovFgnPOOQcmk4kda5VKpbBlyxZ0d3cDUC824MvNO6X3C9jyTxMZG6BOfGNaYxVFcR2AdeM0lmERf8OG8xqQHo5Lr/lzGdVC44FNEARYLBYIgsAO047FYlke+dA0XGx6vR41NTWw2WxIpVIIBoPw+/0wGAwSjGriGzCx5dJoNMJoNLIzPZUeQPpZmfQIBoOIx+OqxDaR+TaRsQHqxqf6Y+OUbtJgCi5XdpE7WDrTgz6Xh77JI8am0RzfIaWEzWq14oorroDJZEIkEsFnn32Gzz///ITAJggCrFYrZsyYgaKiIqRSKXz44YfYsGEDQqEQtFqtKvg2FnwnolwuWLAA9fX1MJlM0Ov1MJvN0Ol07G+tViv5PmGLx+OIRCJ47bXX0NTUpEps9DwR+TaRsJ1o+FTtWOWRMH+TNBoNczT8syAI0Gq1MBgMmDt3LvR6PZLJJJLJJBKJhOTh9/vR0tKS07RHUVER7HY7NBoNUqkUuru7kUwmMzpRJWwUXZGgVFZWory8HIlEAgaDAZMmTYJWq0UwGERVVRV8Ph86OzsRDodzohCj4ZtGo8Hs2bMxefJkVFRU/P/2vjzIqurO/3Pfvne/1xtNs3VDWmg2G4QeI4VKIiqOy5hKJhNRJDAqVcY4+bkkWnFcCMlMqSktR0cT4xi11GSwFHDJOBASwYlpbCXQQLPZ0t30Qne/fV/u74/mezj3vvt6fRvt/Va9ettdzud+1/M933MOLBYLkskkDAYDIpEIAECr1TLFSKVSaffNl7JPRC7lvKN3/nMh8NntdjgcDolcmkwmTJ06FTNmzGA80ev1sFgsMBgM7Lter5dcK5VKIZlMIhaLIRqNoqGhAQaDAceOHUMsFisY77LJN17nlF6pVIp97u3tRTKZPG+w8TKp0+kwY8YMCIIgwZZMJhGPx/OCbTz4pk2bhmnTpkGj0SAej+PQoUOIRqMj6lxpaSlKSkqQSCQgikNDUZFIBIODg2Nqb9E6Vv7BKTkbrVYLjUbDBIO+028VFRV4+OGH4XK5EI/HEY1GEYlE4PV6EYlE4PP50Nraiueff56N48kpF8peW1uLRYsWwWg0IhKJYNu2bQiFQmPCRs+FBPzKK6/Et771LYbN7/cjHA7DZDJh6dKlmDt3Lt555x20t7fnFBswfr7pdDps2rQJy5YtgyAILBgqLy+HyWRiPOIFvhAOaKJyyRsxwkR8LCS+urq6NLmcOnUqbrrpJlgsFpjNZtjtdhgMBjgcDhiNRthsNuj1epamJ2zEu0gkgmg0iptvvhk9PT149NFHMTg4WBDeZZtvq1evluicz+dDNBqFz+dDKBRCKBRCOByG1+tlOn6+YONl0uFwYN26dTCbzQXBNl581157LW655RZoNBr09/fjrrvuwpkzZ0bUuXnz5mHZsmUIh8Ms49LV1YU//elPY8JYlI5VHp3wkQi9dDodbDYbrr/+eqboWq0WOp0OGo0GFosFNTU1MBqNTMkjkQg0Gg0ikQgEQcCsWbNwzTXX4MiRI2hrG9qOM9eRs06ng9FohNlsTsPEYyNB4d/pP7vdjhtuuAFmsxnJZBIXXHABnE6nBJter2djBwAwf/58uFwuHDhwIGdjrqPlmxxbU1MTmpqasGDBAjidTgBAe3s7tm/fjiNHjkCv10MQBMUIk0/z5JrGi4//j4wYr9iUsZDjmzlzJmbMmIFwOIxIJJIT3tntdtTW1mLq1KkwGAwwm80wmUxYuXIlnE4nSkpKJI7VZDLBbrczx2owGBh/MjlWAAiHw+zZ5Jt32eCbzWbDDTfcAIvFgng8jrlz56bpXCQSQSqVYtenZ7Fw4UJEIhGJAe/o6EAwGCwYtqamJixfvhwajQahUAhbt25FIBBIk0m9Xg+HwwGz2ZyGjXDnksbrC5YuXQqXywVBEGA0GrFx40Y21k8971AohHg8zn4PBoOoqqqC1WpltjOZTEKnG7ubLDrHmqnLTw+TnKder4fL5cL3vvc9VFdXs+iZhAgAi4gTiQSMRiNMJhMEQUA4HGZpjjVr1iCVSuH48eOSlEYulJ2iKb1eD5PJBGDI0Wq1WvbSaDQwGAwSwaH/BEGATqeD0+nE+vXrUVZWlmbAKJDQ6XRMkUVRxPz581FdXY1jx46xQpJsY5O/83zjece/6/V6rFixArfddhvjWzKZhMfjwdatWxGLxViqkSJNUmwivueTy17BWPHxv9HvlFITRRGJRALJZDJNXgljXV0dVqxYAZ/Ph8HBQbS1teXEsS5cuBAmkwkGg4EVKq1YsYI5UavVCrPZjJKSEolDtdlsMBqN0Ov1GXWO5DIYDLJnkE/ejZVvpHsUBNHvFRUVWL9+PcrLy5FIJJjOye1JIpFguOLxOABgwYIFLGtGQ1Jut3vCjjVbOtfX14c///nPrPdGbdRqtTAajbBarbBYLGnYKKDKFY0Wn8FgGNYXlJSU4NZbbwUACe+8Xi/C4TDcbjdCoRA8Hg8CgQACgQDjXTwel9S1jJaKyrHKH6C8q6/T6bBq1Sp885vfhMVigdVqxdSpU2GxWJiC8wUuFB0DYFWNsVhM8h6NRrF8+XJUVVXhgw8+QGdnZ04VnIo+LBYL7HY71q9fD61Wy4SX/guHw/j1r3+NQCAgSXPQ+XwkStGVxWKBRqNBNBpl76Qker0eVqsVl19+OU6fPo3m5uas4RwN3/iAiJRhwYIFuOOOO1BXVweDwQBRFOHxePDLX/4SX3zxBTNu5HwohUjvRHzRQS5ovPhI+a+77jqsWbMGABg+t9sNrVbLencajQZWqxVr166FwWCAz+djTs5gMLBnkW2iQM5gMDDZI4dqMpngcDiYrtntdoTDYTz11FMIBoPQ6/W47rrrcM0114yoczQeq9Pp8sa7sfKtrKwM99xzD5xOJ8uAUWEWGW/6Ppw9SSQSiMfjMBgMzOHydRSFwDaczrlcLmzevJmNQcbjcdaDE0WRjSXLseVKJseCz2AwYMOGDVi8eHFWfIES7/h0+WipqBwrkJ5P12q1cDqdrEhi2rRpmDFjBhvvCQQCiEajMBgM7KGXlJSwVCgAZsB4QeNfDocDVVVVMBqNknbkoldHQqHT6WA2m1FdXQ2TyYTS0lLYbDZYrVbYbDYEAgH8z//8D7xeryT9odVq4XK54PF4mNCQIvj9fsRiMRaV8j0lEsLq6mokk0lYrVaWciSFmig2JWXg0zX00uv1mDJlCmbPno2vf/3rbIzO7Xbj9OnTaGlpwZkzZySRIrWPDySUlDoXfFPCJ5dLSolS75oKxTQaDcrKyjB79myIogi3243q6mqWWaDUWywWg91ux+LFi2EymTA4OAifzwe/349oNMqul218qVSKXTuVSjFdod4XfaeilVAohO7ubvj9fmi1WnR1daGvr4+1rbS0lMkbXY+XQZLlfPFuLHJpNptx0UUXYcqUKTAajQiHw+zZUNAn1zmyPx6PB+FwGD6fj/V6AoEAIpEISzVSOph6hfnCVl5eDrPZDIPBgNmzZ+OSSy5hWQYqEGxsbGTXjcfjiMViTPY8Hg9CoZCiTaH75kPnMuGbO3culixZAqvVyn7jU9YARu0L5NklGoYZKxWNY5UrGj3IkpIS/OAHP0BlZSVcLhd2796Nn/70pyyilM9v1Gq1eOCBB9DY2Cj5DQBzOBSJ0MNsaWnBjh074Pf7c46Nepxms5mlp6k3YLPZYLFYYLPZUFJSgieeeIK1myiZTGJwcBCbN2+G2+2WpBUTiQQcDgfuuecepkiEkQQNAMrLy3HFFVewc5qbm9Hf3z9hbPRdKRXFv8rLy/H444+z6mWqIH3iiSewb98++Hy+tGtqNBo2xsM71lwq9nD45HJpsVhYz87n8+Ghhx7C4OAgRFHEW2+9hQ8++AAajQZOpxP33nsvnE4ncz7ksMh5RaNRxjetVovdu3ejra0N4XA469j6+vqwY8cOibHiAzOK/ulzeXk5/vVf/xUulws6nQ5vv/02KxIpKyvDli1bUFZWxnoLdC3SU96x5tooy7+PJJeEk/Ttrbfewuuvvy4JbEnX+MpYGo6hNCM/jkfBEz92LorihFL6o8FGWAwGA+6++25cdNFFrLaDHCofMPG2kudbKpVKcz5ye5JtGivvSPd43g2HD8jsC3h8kUgEf/jDH+D1escso0XjWJWIHqbL5UJFRQXKysqg0WjgdrsZeBpYph6NTqdDMBhkgksCcOrUKXz55ZeIRqMsGqMq4VOnTsHn87ExBCB3aUW3240vvvgC8+bNkxR/8C8SHBp8J+NDSh2JRHDmzBmcOXOGGWYAmD17NmpqalivSR7tEWk0GphMJng8Hni9XgnubFCmNI5Go0FDQwNqa2tRVVUFu92ORCKBU6dOobOzEydPnmQ9VcLFG6NMpJRazCWRgvJyabVaYbVa2dxO4NyYsN1uR01NDXPITqeT9XbJ4FIhhdvtRiwWkxiuUCiEYDDInkU2KZlMsqp0GmoQBEGSPuQdjyiKOHHiBAYGBqDRaNDe3o7e3l4IgsCCgkQiIZFZemZKY1X55N1o5JKMbSKRgM/nY9j44I6XS3KeNOxC72TU5Q41X9j4NjudTlRWVrIxUd7ZUIr38OHDbDyRhluUbGUwGEQoFILX62W2I9+Fg4Rr+vTpqKurk6ToiXc8Pmqf1+vFyZMnWVBE4/+km/JsiiiKrMc6KRwrD46cAFUrknCQwMojP1EcWunF5/MxBwUA7733Hl566SWmCLFYTBJp5kM4AKC1tRVtbW3YtGkTSwPz+EwmE0tl8BV6fPRLKRoqQqKU2/r167FkyRKWluKFhYg3Ch0dHWhtbc3qWGsmBSdntGHDBlx88cXQaDSMB9u2bcPLL78suQ61iYIGflyVjFSujdVI+Mxms4RvJJ8ajQaJRILJ5sqVK3HTTTex9J9Op1PsfSoZ/PEUTmQDm9JLFEUMDg7i4YcfBnBuwj1RNBplUzGUrq80Ob8YsGWSy3A4nBagF5tcjoZvJEfUVr5AKZlM4syZM3j00UdZ1oraTv9TDzwSiTAbxNc7FArf6tWrsWHDBlZzksleUg/8888/x8MPP8zanEgk4HQ6sWXLFlitVsXgb7x8LErHSsQLRk9PDz744AMcOnQIQHqkm0qlsHDhQixYsABlZWXweDzYuXMnS6t99tlnkjEt/nO+ezypVArNzc3o6OhgvVYaM6YUt81mwzXXXAOj0cgUndpK30lAli5diiVLlqCmpoYpNR9ZK71yaQCUlJuID4jonQzYcONv/LlKbS+EgyXZpLFDYIi3RqMRN954I6surK+vl4zTUFv5ghaeZ8Tro0ePoqWlBQMDA3k31Jl4B0DSEyOdo+IrvV7PjJocG12jULwbq1zW19fj29/+NgAgEomwFcDkVAxyqYRt6dKlWL58OaqrqyWLO8jtRywWY86TJ36eJz//k7cx+aJMAQMNp/Apejm+UCiEnTt34sSJE+wYwsc7YLlfmAi+onas/FSTrq4uvPnmmyzClJfpp1IpzJ07FzfeeCNLF//3f/833G63ogIN51RyrQyiKKKlpUUypiWvQqysrERTUxNKS0vZ/DgadKfIERgaK1iyZAluvfVWNqmZFwz5ixekXEab/DPne2HUBupxh0IhljXgK/8yGb5C8o2Il0u+KAcYUlaj0YgbbrhBEuXTkox89E3Ohx/z4p3r0aNH8eGHHzI+5dNI85+px8M7SmrPvHnzcOONNzJscscqx1Zo3o1GLolvc+bMQV1dHbMnH330EYLBYNHKpRxbY2MjbrnlFgBIw0b80Gq1zGbQOCTf7mLBBkjTwXKdA6CIT6PRwOv1ZvQFAFjQQcEF72AnXY9Vo9Hg2muvxQUXXICSkhL09PRIct/0WR4p0hxAfjIzjY3II0mlVyFw8ulawjY4OIgtW7awJRmp/QaDAclkEoFAAPPmzcOGDRswffp0SQqExkboRcISiUTw0UcfIRQKsWvkgvg0PmFbvXo1rrrqKtTV1bHFOtra2vDKK6+gq6sLoihKKv7o/GLjG8nl3LlzUVJSIlFwPs1GwQI/VCFP8/IyrMQ7UuxCGC8l3vHFVdTe6upqpnPDYeNluJCp/EzYeLlU4lux2xMlbNSGkWSy2LHJ8c2dOxcbN25EXV3dhPF5PB48+eSTAMA6JqSDtFrfeKhoHasgCJgxYwbq6+vZHLuKigoWNXs8HpYjp4dOu7rIlTwTFTKVSO9KqU9RHCrn379/P/tOL5pz6HK5MGvWLDQ1NUnGr+Q901AoBLfbzYoNenp62Py0fGKrqanBsmXLmMNIJBIIBALo6OhAKpVCeXk5jEYj6w3SNWgchxSmt7c3L0VmwxFfDCIPilKpoXmAfX19bEoGcK6Xq9frUV1dzQwg3ysg50PFableKk5Oct5RFXB9fT2WLVvGIvpwOMx4kmk8T6PRIBAIsOU1+/v7CzLskgnbcHLJ93bOR3tCfKMVhEaSSa/Xy/BmokJhA9Lxmc1mzJw5EyUlJUxvxsu7RCKBgwcPsh6rPAgcbzq4aBwr9dR4J8OXjS9YsABPPfUUK17asmUL2tvb8ZOf/IQtg+dwONg4D60MotPp2MNRGgfJh5AoYeOFhf+NjzR54oXE6XTi5z//OWpqatiyhvF4nDlUUp54PI6//OUvLJ1IBRn5wqZ0LO/86+vr8fOf/zytzJ3mJJtMJpamoY0E7r///ryOOcrxiaKIrVu34uOPP8YjjzwCh8OR5ljdbjc2b97MptvQM9Hr9aioqMAvfvELOJ1OCT56JrFYDG1tbXj66adzllHIhI3aSTR//nw8+OCDKC0tlfCN9Ij0k69mpypik8mE3//+93jttddYD9zj8bD75pomIpeiKKZNwThf7AmgzLfhZBIYGkMuBmyjwXf48GHcfffd+N73vod//Md/LEreFY1jVaL29nZYLBa4XC5YrVY4HA5WMdvQ0ACn04kpU6bA4XAwpabpK1Rdq6RMhRIYOQ2n6PLj+FSIXq9HVVUVysvL2bwzcsgkYF6vF62trejo6IDP55twBDZWGsmICYLA5vDyfKOIm/hJAYJer0ckEpEsiVcovgWDQXi9XgDnUm88vmQyCbfbzXbEoGdBmRea10m1AsS7aDTKqsZpjnIhiG9veXk5DAYDw0b/84uOEO/I0dJ/FRUVmDNnDv72t78hEAigvr4egUCAbSFXSGxy4uVSCdv5ZE+CwSBOnjyJ2rPbL44kk8S3YsYGnGuzxWJBXV0d61CJ4lBBJ7+Wdl1dHZs+VQjeFa1jFUURO3bswF//+ldceOGFbEI9OZlbbrmFGR7q3ZhMJhiNRrZqDL82Ke9YCj1WoDSAzjtGIjLYdDwVOfFruNJEZnlVW3t7O/7zP/+TpX0KSXyPjvCSAZbzjQq6+NSNHFsh+CYnfqI6n9all3zsnOcdrbDF4xPFoZV9nnvuOfT29ua14nI4ojFkHpsS78gw87xbs2YNVq5cibvuuguHDh3Cbbfdhvb2dvz7v/97oWEBGJtcFqs9UaJjx47hoYcewve//32sW7duRJnkl+wrdmwAUF9fz+pPqF1erxfPPPMM+vv7odFocPvtt6OxsbFgvCtKx6ok8PSd3smwUTqDX8mI0qW33HILDh8+jG3btimmXgtJ8rEeipbl//OFPErVqADQ0tKCjz/+GD6fj20b19XVNaGqtmxgEgQB06ZNw9VXX43FixdLUjyUrpHzLRQK4fe//z1bEIGmc9AzKiTx+EKhEN5++204HA6YTCYmizQGGY1GGX+G4x0wlJbatWsXDh48mNPx79Fio+8dHR34r//6Lwk2IvmScLQ2siAM1UZcffXVrPe3atUqzJ07FzabDVOmTMHf//3f49ChQzhy5EjBsAHnqvNpCMVisWDNmjUoKSlJk0v5eHqx2BMlbNRDJcfB2xIlmZSPPRYLNmoDvSwWC6699lrMmzdPUqAlz+gBQzbxpZdewnXXXcdWm8on74rSsfIk793xRocXFn4FI0EQ4HA4sHbtWuzZswfvvfceK/+XX7OYiBcScj5E/LQOXiESiQQ+/fRTvPjii5LVX/K56IUS0TOuqanB2rVrJWs384U8fM9AEAR4vV787ne/Q09PD2KxGNavX4/58+ezc5UMQSEoHA7jnXfeYUaXL5Igh0LtlPOOomd+XPWPf/wjPv7443FXIWaTiHenT5/Gb3/7W0VsfK+H9I+M9t/93d9h9erVrNd96aWXIhQKYWBgAJWVlVizZg3i8XjeHKsSNqLPPvsM+/fvhyAIqKiowKpVq+ByuST2hLcvND2Fv1ax2BN5O3h7OZxM8ssAyq9VLNgAwGq14rrrrsPUqVMBIM0X8Pg+//xztLa2oqmpCfX19RLHSsfz79mmonGsvEORR2EUUcZiMYlR8vl8ePHFF+H3+1nETNGzy+XCD37wA9TX1+OJJ57Atm3b8O677w57P/6/bDqlTNj4F99jJUMmj7L4Xk8ymcT+/fvx7LPP4uTJkxnHZQuNTRRFZoj4+cf8ep98SpRfjgwAW7w8Ho/DbDbjjjvuQGtrK9544w3FXn62g4mx8I5Pt/GVzbxD0mq1TJaTySTeffddtu9spvvlCl+usB08eBB33nknLrvsMqxcuTJt8YFixRYIBPDkk0+ysVWNRgOj0YhNmzZhzpw5+OlPf4qWlhb8x3/8h2KQX2x84xcbofP4AEnONz4jWChsw+EDMvsCJXw0tUZuU/KBr2gcqxIJwtAkelqX1GKxMEEQxaGdQvbv3w+PxyNxRjQ1p7OzE6WlpZg5cyZKS0vZdSlVTIPe/KIJNA0k1709Emqn04lUKsVWdOEjTP5Ycj5OpxPl5eUQRRGBQADHjx+H2+1OuzZ/Pn+9fPRi+ftTWor/riTA/PhyWVkZmyJgNpuZYuh0OsybN4+tbVsIbHJ8mf7nj3M4HGxlrbKyMgDngoiOjg789a9/ZUUXheQdtZVfmpEPfMLhMHOQvPHiP7tcLgDA8ePHUVdXh+7ubvh8PpYap/WQqTq9UHKpRPF4HAcOHJDg0el0uPLKK+FyuTB//nzEYjFUVlZKlkSNx+Ns3W75/YDCYQsGg+jt7WW2Up4Wljss0kHaOpDmhcbjcYTDYVb4lG9sdL+RfIEcHwAMDg6iv78fpaWlCIVCipuN5ELnitqxAoDP58OWLVskvRuKmkVxaF3gZPLcZtEA2JytH/3oR+y73+9nY442mw0//OEPYbFY4PP52PZQHo8HbrcbW7duzflUB2Bok+l7770Xp0+fxgsvvJA2nkzzsfgU6qZNm7Bs2TIYjUbMmTMHzzzzDF599VW8+eabRVVoQPcnB8njAc45FurNUlrUZrPh0UcfZdNQaC9LIPO830KQPPodjnfXX3891q5dyxSftiSjNLCcb4XinSAI+O53v4v58+ezam2z2cx6qE8//TRaW1vT5BIY0rHS0lI8+uijcDqdSCQSePvtt3HnSogZXQAAFjhJREFUnXciHo/DZrPhrrvuwqlTp/IylSgTDcc3PgDk5fSXv/wlpk6disceewxz5szB008/zRYQCAaD6OnpwSOPPDLuHaKyRXJsO3bswO7duyW2Uo45Ho9LeriiKOKqq67C9ddfj0AgwBbh379/P5555plCQQMwdl9AvJsyZQp+9KMf4cSJE3jsscdYTz6XOlfUjpWYLe+RCsK56kMa7+FXXKKHdubMGZaK5JeFox4rVWbS3Luuri4MDAzkpSKTenKdnZ1s8jyQvtoQGePp06ejtrYW06ZNQ0lJCdsL8sSJE3C73YrzsuT3y5fBliu4PPDRaM4tcyfvzYqiyHrxyWSSGTBgaDL3oUOH0lLf+XZGPD4AklSUEu9MJhNcLheT50QigcHBQRw+fBhdXV1FwztBEGCz2ZhuyB0rDUHw2OQ653Q6UVZWhmQyiZqaGtTV1eHgwYOsR5FIJNjiLvnERvfi3+V8U3pPJoe2aaSlGmnbQ5JLk8mUsfK+0NhoJxq5rZTzjbc5oji00cLJkycxdepU2O12tmd1obDR/cbqC3jelZSUMAzDBVfZwndeOFYyvvSdHx8hwaAImv9Pfg1+grs8Mk2lUti7dy/a2try5lipRFyeOuQFg7B94xvfwMaNGyEIAlsM4vDhw7jvvvvYd36SdKZoLB/KwD9zWrwCOLdJOa8UNDGdL9TiHRDxUqvVIhgM4rnnnkNfX58EZz6xyfGNRi5jsVjaIvxHjhzB/fffzxZ9Lwbe8ffkAxviDc0pzqRz0WhUguXyyy/HxRdfjPvuuw/Hjh2TjP8VWi7Hak94bHK5JBtSLDo3UVv5v//7v9i5cyd+8pOfYNGiRZIK3PNF5zLxjgL9XOtcUTvW4Ugp6uCFJBOtWrUKM2bMgMlkYsw5fvw4Dhw4gP7+/rxHYiQc8kUG6F2pPfz/8rSG/JhCE7WR7wkAYErAR8zycQ2+MGHXrl04fPgwAoFA0czxVKJMcinnjZJiy69RKOKdK71rNBpcdtllmDFjBj788ENEo1FFnZMXkvAVxIS3kGQ2m3HFFVfAarVCp9OhtbUVhw4dysg3rVaL1atXY9q0adi+fTvTN34aGFE++GYwGNDQ0MD2/zUajewVi8Wwd+/etMrysdpKnke8EytWGg2+VCqFadOmYf369fjkk0+wb9++nOrciI5VEITpAH4LoAqACOAFURSfEgTBBeBNALMAtAP4jiiK7kzXGS0N5xjlD4KPSngDID+HztNoNLj88suxaNEiVkCRSCRw/Phx7Ny5M+eKMRZs/LvSQDpf7Tfc+fkKFDJh450IOVDgXHUfOVZ+XqccdzKZxK5du/CXv/yF9X7ziY1vixIN9+x5p8Lj4Z2M/Bz+c6F4x+sUOcmVK1diwYIF+L//+z/EYjGJ85TPzVUaD8/lhPzRYjObzbj66qtRUVHBVpQ6cuRIxmIsjUaDK664ArW1tdi0aRP6+vqQTCaxbt06LFy4ME03c43NYDBg8eLFcLlcqKioYIuNWK1W+P1+fPrpp2kbcyu1bSRbyVMh+AZkxxdQVgEYmvq3bt06RCIRNDc3S87lP2cD32h6rAkA/08UxRZBEOwAPhUE4UMAtwLYKYriLwRB+DGAHwO4f7wN4ZUwU5UWL/j8u3xuJ73zRnz16tVYtWoVpkyZwlJcJ06cwOuvv47u7m4AuRs3mAi2efPm4Z//+Z9RW1vLzvN4PHjmmWfQ3t6e5lyH6+UWAhtVVvJL3ZGwy38jIkVIpVL48MMPsWPHDrS1tWXEkUtlnwjvGhoasHHjRtTW1rL0FKX/29vb0zDkG58SNqWFLHg+lZWV4cc//jFSqRSrTSB+GY1GlJWVpS3VSC8qSCsUNiIe2ze/+U0sXrxYMsdYp9NJsF1wwQWIRqPsGN7RDLcaWC6x8eOlmaZBZcNW0tSWfPGNb7/8s/z/kfDpdDps3LgRixYtSpNLwpAJy0TxjehYRVHsBtB99rNfEITDAGoAXA/gsrOHvQxgNybgWIcjQRBgMBjgdDpZlKXT6ZihopQN/8B1Oh1KSkoADI0Nfe1rX8PSpUvh9XrZji+nT5/GoUOHCrImqzyi578LgsCKJGpra9HU1MTm1bndbvT09KClpUVShZgpHZKv6FKJhLPjwVRAwC9ZWFVVxQwXv2weMOSMo9EoBgYGcPToUTQ3N7NxrWLBRvjk77yCO51ONDU1sV17qEJ6//796O3tBZA5Yi4UvkAgwLI5FosFFRUVEmer0+lw4YUXQqfTsaUM+cXNqUKT8FClt91uh8fjgc/nKxg2h8MBl8vF5FCr1aKmpgYzZ85k9oMcKmEjPAMDA2x3rXg8DovFInGsIxWgZYtEUWR7GPMknz6TSSaVnLLcVtbX1zNbSdXrGo0GDocDwWAw6xt5jJa0Wi3jHz+2nckXaDQaXHDBBbjwwgslcmm1WlFeXo6BgQGEw+Gc6NyYxlgFQZgFoBHAJwCqzjpdAOjBUKo460QC0tDQgPvuu48Jvk6ng9vtxkMPPQSPxyPpCQFD8z23bNmC0tJSVlIeiUQQDofR29uLxx9/HL29vWll10T5VHylaKuiogKPP/44ampqYLfbWQHJ888/j+bmZvh8PtZOSivy0fNw6Zt8puDa2trwwAMPSPBVVlbi8ccfZzu8kNGmNicSCRw4cACPPPIIBgcHJdgyFRzkGxtvuDL1BIxGI6uuJXwmk0kSMROvigFfKpXCa6+9xtbHbWxsxP333y9ZdUij0TCnQ+vMynlHmGg61c0334yuri489dRTOHPmTEF0TqPR4Oabb8aiRYvYykqEQ46NdufhsVVXV+Pf/u3fWAEXb0/IOOeDb+FwGO+99x7mzJmDb3/72wAyzylWkknesY7GVtKrqqoKt912G/70pz9hz549BbGVJSUlePDBB1FeXg6z2cz8QCZfQHykXaSIR1deeSWWLFmCn/3sZ2xJy2zzbtSOVRAEG4CtAO4WRdHHd89FURQFQVC8uyAItwG4bawN46NeYGhsobKykk1epxQVGS1eYIicTidcLhei0ShCoRCCwSCOHj2KkydPoq+vj0XPSvcbDY0XG92HvxevEPPnz8esWbMwffp0ZgQ6OzvR0dGBU6dOsSlBFDHzhTBKBTH5xCa/F/VY+VQbv3sNPyctkUggEomgpaUF+/fvZ8saZqrgGy+2ieLLxDvin8lkQmNjIxYuXCjZXICvaMzEu2zgmwg2v9+PYDAInU6HQCDA9IxPBxP/eN7Jgzp++8Lu7m60t7ejv7+/oDpns9nYTlj8EAWPjZdJXi6BIXtCS4aGQiGEQiG2JV6+dC6VGlpMhvbE5cfqDQYDFi5ciHA4zOwij0P+TrLocDhQVVUFm82Who02/Q4Gg+ju7pYsnpMvnQOGdquZPn06qqqq4HK5YLFYJAGfzWbD17/+dfj9fskcV5fLxXCSXA4MDODEiROsEDJbNoWnUTlWQRD0GHKqr4mi+NbZn3sFQagWRbFbEIRqAH1K54qi+AKAF85eJ2NL5ekw3kGSwaIok4wVCRDtKUjCQnPtaKpHJBJBKBSC3+/Hq6++in379kkWLcj0YEei8WIbzihrtVrcfvvtuOSSS2Aymdjyart27cLzzz8vcag0ZkVFQLRCUaZeaz6wyfkm79mRobZYLKw3R8ekUkPb3T322GM4ffq0ZFWsbGLLBT4+XVpeXo7Nmzejurpa0kOl9N35wjslnSPHSkGtHBulu4tR5+g3ci6jxcYHPjy2QCCAQCCAYDAo2VM3H9jIttFykZRy/5d/+RcYjUa20hePjbZPk/MtkUggGo0qYguHw/D7/Th69ChefvnltPHkfOnct771LTQ2NrKtQ+W8s9vt2Lx5cxo+siE8795//3289NJLbG31bNkUnkZTFSwAeBHAYVEUn+T+2gZgHYBfnH1/Z1wtkJFcEQgwL7Q0AG2327F27VqEw2HJfNRYLMbGJIPBIAKBAPbt24fm5mZ0dHSkjYnkizJho4hqyZIlWLZsGRvzoXEBvgdAQkCfeQM93BSOQmEDzs1fpZff78crr7wCm80mKbigVV4GBweZwSgGbKPBl0qloNVqcfXVV2P+/PlwOBxpRSHbt29Ha2srWyChWPBlwka721x88cVoamqSpBgJE50fi8UQj8dZT8fv92Pfvn3Yt29fUehcKpXCRx99hNOnT+Paa6+VpK/5yueRsEWjUeZ0/H4/du/ejZMnTyIUCrHr5YPcbjf+/Oc/w2QywWw24/LLL8e0adPYIhbkkPhCHqU5t/yShcQ3whcIBODxeLBr1y7Gw3zzrra2FnPmzIHD4UA8HkcsFsvIOyV8PO/a29vx3nvvsSVElYZeskWj6bFeAuBmAAcEQfj87G8PYMih/k4QhA0AvgTwnay1CsrKLl9Q2maz4Z/+6Z/YQ6WHFAwGEYvF4PP52KbUzc3NeP311xXHd7IRoUwEG7W7sbER3//+91mxCx3LR6b0DMggk4OVVycWCzYlrIFAAK+++mraudR+OTbCXWhsI+EDgCuvvBIrVqyAwWBgeKkKffv27di7d+95w7vOzk68/PLLMJlMWLp0KesJ8E6HZDcSiSAWi7HCGtK5N954I63wrBDYUqmhBWCOHj2KSy+9FDabLc2e8GPffKBD6V5yrH6/Hz6fDz6fDx999BEOHjwocTr5wOZ2u7Fnzx5m++rr61mKlFbIovaPB1sgEIDP50N/fz92797NCoPyzbdZs2bh0ksvhd1uZzJGy5yOhXeBQADHjh3Db37zG4ktzZVcjqYqeA+ATBOKvjHuO6ffh30mYeAjwEgkgsHBQcRiMZjNZlgsFkm3XxAEZrB8Ph+Lvo4ePYrXXnsNnZ2dad1+updSG7JJw2HjDVUwGMTg4CAsFgtLRx05cgS//vWv0d7eLtnQnASDjLM8jVgM2ACkRZB0HL9FFf1ebNhGwid3MoIgIBgMwufzsYwJALz//vt4//330draylJvxYBvtNi2b9+OAwcO4Pbbb0dNTQ2effZZeL1eyXWoUvY73/kOuru7mc7xBqwYsNGYv8FgQCqVgtVqHZM9iUajzKHu3bsXX3zxhcTIFwIbALz99tv45JNPcNNNN6GsrAyiKMJisaRhI5kcDtuePXuwd+9eNsZK46qF0LlwOMw2GTGbzUilhjYJGAvvBgYG8Nxzz+HLL79k6d9c61zRrbwkFxpKp4XDYXR2dsJms8FsNqOyshJms5lVsQHnllzz+/2IRCLo7u7GiRMn0NLSItk6SCkiyVePQI6NX4HI4/Ggq6tLgq2/vx8HDx5EIBCQpIL5MTmldEYxYCNB5deXBSBJufHtLVZs8vso8Y5w9fX1oauri01TAYCOjo60FHAx4RsJ26lTp9Dd3Y1Vq1YhFovh448/xuDgYBrv7HY7li9fjs7OzqLVuUQiwZbEDIVCzDjTmshGo5EdT7wi3QPObejR19eH9vZ2hEKhgmNLpVJob29n9oMKkJSw0bATj42cJzlYWolOacwxX9joPrSPbzweZzvumEymMfGut7cXzc3NGBwczJvOCfl6SMDwA9ay4wBI52YZDAZW0afT6XD77bejoaGBFS4BYNExzcV79tlnMTAwIElj8D0M/n20JIqiYu99IthojMBqtcJut+OOO+5AQ0MDdDod4vE4vF4v3n33Xbz//vsSHLwzKnZsStMBuPuy93xjyza+0tJSVFVV4d5772VzA30+H7xeL371q1/hyJEj5y3vSktLodPp4PP5FNtLwzMks8WIjeZj8otE8FNT5GlFar/VasXatWuZUfd6vfB4PPjDH/6Ajo6O8xob/0okEmyKTTHonNFoTJv5wRcKjgYfbfwgH3LJJb6i67EC55SUHoAgCIhGo+jv72cP9+DBgwgGg5Jl1OjBxWIxeL1e9PX1pZVU0/X590Jjo+9+v59FaIODg5LCHhIQPoLknVCxYyMM5FD5ClT+/GLFRvcdCR/15Pr7+9k0DX49ZJ6HxYRvtNiA4Xk3MDBQ1NgoM8QHD3yglwmb3W6Hz+djU8JEUZT0AOm4fFM2sBWzztF0H2q7HFux4itKxwqceyC84NKDSyaTePPNN9MiFKXz+YeodFwhaDhsqVQKPT09bEs7Or6/v59tnya/Dv+90DQcNl7w+c9KvJP/XgzYgNHhC4fD+PLLL9lWaeRQfT4fm3JC1+KvW2iazLybKDYK7C0WC6sopSKYQuObzHwDzk98RetYieiB0mf+99GeP9Zz8kVK2ERRZKkm6rGKosh2E5Gfr/S5GCgT3/j/Rzp/tMcWgobDR5XP9B+Np/JGuJjxTWbejRdbNBrFp59+Cr1ez9KJyWSSrYBWDDSZ+QacX/iK3rEC0ofARy3jOb/YSAlbMBiE3++XRGDyHSuUzi82msx8AzLjSyaT8Pv9aeM58t5NMeObzLwbD7ZoNIrPPvss7fxio8nMN+D8wVeUxUvFTOIEiw1GQ+Xl5TCZTJLfaN5cLikf2ApFmbAB2cen1WpRWVmZthXewMBA2uLp2aKvIu9UbMVN+dS5QtCw+FTHOjb6KirCZMYGTG58Krbipq8iNmDy48t3KrgfQPDs+/lA5ZC2deYwx6rYiofGgg0AAgDactecrJIcG/DV5Z2KrXhorDp3PuEbq87lt8cKAIIg7BNF8aK83nScNNa2qtiKg1RsEz+nUKTybvzHF5Ims1yOp52akQ9RSSWVVFJJJZVGS6pjVUkllVRSSaUsUiEc6wsFuOd4aaxtVbEVB6nYJn5OoUjl3fiPLyRNZrkcczvzPsaqkkoqqaSSSpOZ1FSwSiqppJJKKmWR8uZYBUG4ShCENkEQjguC8ON83Xc0JAjCdEEQ/igIwiFBEFoFQfjh2d8fFgShSxCEz8++1mQ4f9JiO3tsUeKbzNgAVS6/qtjOHjtp8U1mbIxoybVcvgBoAZwAUAfAAGA/gIZ83HuU7asGsOTsZzuAowAaADwM4J6vKrZixzeZsaly+dXENtnxTWZs/CtfPdblAI6LonhSFMUYgDcAXJ+ne49Ioih2i6LYcvazH8BhADWjPH0yYwOKGN9kxgaocjkMTWZswOTGN5mxMcqXY60B0MF978Q4GpsPEgRhFoBGAJ+c/elOQRD+JgjCbwRBcCqcMpmxAecJvsmMDVDlUkaTGRswufFNZmyM1OIljgRBsAHYCuBuURR9AJ4DMBvAhQC6ATxRwOZNiFRs5y9NZnwqtvOXJjO+iWLLl2PtAjCd+z7t7G9FQ4Ig6DH0IF8TRfEtABBFsVcUxaQoiikAv8JQGkNOkxkbUOT4JjM2QJVLfPWwAZMb32TGxihfjrUZwNcEQagVBMEA4LsAtuXp3iOSIAgCgBcBHBZF8Unu92rusH8AcFDh9MmMDShifJMZG6DKJb6a2IDJjW8yYztHeay2WoOhCqsTAB7M131H2bYVAEQAfwPw+dnXGgCvADhw9vdtAKq/atiKGd9kxqbK5VcX22THN5mx0UtdeUkllVRSSSWVskhq8ZJKKqmkkkoqZZFUx6qSSiqppJJKWSTVsaqkkkoqqaRSFkl1rCqppJJKKqmURVIdq0oqqaSSSiplkVTHqpJKKqmkkkpZJNWxqqSSSiqppFIWSXWsKqmkkkoqqZRF+v9xYKbq0ky5yAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [], + "needs_background": "light" + } + } + ] + } + ] +}