forked from feihuzhang/GANet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
212 lines (183 loc) · 9.25 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
from __future__ import print_function
import argparse
from math import log10
from libs.GANet.modules.GANet import MyLoss2
import sys
import shutil
import os
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
#from net2 import Net
#from model import Baseline
#from models.GANet15 import GANet
from models.GANet_deep import GANet
import torch.nn.functional as F
from dataloader.data import get_training_set, get_test_set
# Training settings
parser = argparse.ArgumentParser(description='PyTorch GC-Net Example')
parser.add_argument('--crop_height', type=int, required=True, help="crop height")
parser.add_argument('--max_disp', type=int, default=192, help="max disp")
parser.add_argument('--crop_width', type=int, required=True, help="crop width")
parser.add_argument('--resume', type=str, default='', help="resume from saved model")
parser.add_argument('--left_right', type=int, default=0, help="use right view for training. Default=False")
parser.add_argument('--batchSize', type=int, default=1, help='training batch size')
parser.add_argument('--testBatchSize', type=int, default=1, help='testing batch size')
parser.add_argument('--nEpochs', type=int, default=2048, help='number of epochs to train for')
parser.add_argument('--lr', type=float, default=0.001, help='Learning Rate. Default=0.001')
parser.add_argument('--cuda', type=int, default=1, help='use cuda? Default=True')
parser.add_argument('--threads', type=int, default=1, help='number of threads for data loader to use')
parser.add_argument('--seed', type=int, default=123, help='random seed to use. Default=123')
parser.add_argument('--shift', type=int, default=0, help='random shift of left image. Default=0')
parser.add_argument('--kitti', type=int, default=0, help='kitti dataset? Default=False')
parser.add_argument('--kitti2015', type=int, default=0, help='kitti 2015? Default=False')
parser.add_argument('--data_path', type=str, default='/ssd1/zhangfeihu/data/stereo/', help="data root")
parser.add_argument('--training_list', type=str, default='./lists/sceneflow_train.list', help="training list")
parser.add_argument('--val_list', type=str, default='./lists/sceneflow_test_select.list', help="validation list")
parser.add_argument('--save_path', type=str, default='./checkpoint/', help="location to save models")
opt = parser.parse_args()
print(opt)
cuda = opt.cuda
#cuda = True
if cuda and not torch.cuda.is_available():
raise Exception("No GPU found, please run without --cuda")
torch.manual_seed(opt.seed)
if cuda:
torch.cuda.manual_seed(opt.seed)
print('===> Loading datasets')
train_set = get_training_set(opt.data_path, opt.training_list, [opt.crop_height, opt.crop_width], opt.left_right, opt.kitti, opt.kitti2015, opt.shift)
test_set = get_test_set(opt.data_path, opt.val_list, [576,960], opt.left_right, opt.kitti, opt.kitti2015)
training_data_loader = DataLoader(dataset=train_set, num_workers=opt.threads, batch_size=opt.batchSize, shuffle=True, drop_last=True)
testing_data_loader = DataLoader(dataset=test_set, num_workers=opt.threads, batch_size=opt.testBatchSize, shuffle=False)
print('===> Building model')
model = GANet()
criterion = MyLoss2(thresh=3, alpha=2)
if cuda:
model = torch.nn.DataParallel(model).cuda()
optimizer=optim.Adam(model.parameters(), lr=opt.lr,betas=(0.9,0.999))
if opt.resume:
if os.path.isfile(opt.resume):
print("=> loading checkpoint '{}'".format(opt.resume))
checkpoint = torch.load(opt.resume)
model.load_state_dict(checkpoint['state_dict'], strict=False)
# optimizer.load_state_dict(checkpoint['optimizer'])
else:
print("=> no checkpoint found at '{}'".format(opt.resume))
def train(epoch):
epoch_loss = 0
epoch_error0 = 0
epoch_error1 = 0
epoch_error2 = 0
valid_iteration = 0
model.train()
for iteration, batch in enumerate(training_data_loader):
input1, input2, target = Variable(batch[0], requires_grad=True), Variable(batch[1], requires_grad=True), Variable(batch[2], requires_grad=False)
if cuda:
input1 = input1.cuda()
input2 = input2.cuda()
target = target.cuda()
target=torch.squeeze(target,1)
mask = target < opt.max_disp
mask.detach_()
valid = target[mask].size()[0]
if valid > 0:
optimizer.zero_grad()
disp0, disp1, disp2=model(input1,input2)
if opt.kitti or opt.kitti2015:
loss = 0.2 * F.smooth_l1_loss(disp0[mask], target[mask], reduction='mean') + 0.6 * F.smooth_l1_loss(disp1[mask], target[mask], reduction='mean') + criterion(disp2[mask], target[mask])
# loss = 0.2 * F.smooth_l1_loss(disp0[mask], target[mask], reduction='mean') + 0.6 * F.smooth_l1_loss(disp1[mask], target[mask], reduction='mean') + F.smooth_l1_loss(disp2[mask], target[mask], reduction='mean')
else:
loss = 0.2 * F.smooth_l1_loss(disp0[mask], target[mask], reduction='mean') + 0.6 * F.smooth_l1_loss(disp1[mask], target[mask], reduction='mean') + F.smooth_l1_loss(disp2[mask], target[mask], reduction='mean')
# loss = 0.2 * criterion(disp0[mask], target[mask]) + 0.6 * criterion(disp1[mask], target[mask]) + criterion(disp2[mask], target[mask])
loss.backward()
optimizer.step()
error0 = torch.mean(torch.abs(disp0[mask] - target[mask]))
error1 = torch.mean(torch.abs(disp1[mask] - target[mask]))
error2 = torch.mean(torch.abs(disp2[mask] - target[mask]))
epoch_loss += loss.item()
valid_iteration += 1
epoch_error0 += error0.item()
epoch_error1 += error1.item()
epoch_error2 += error2.item()
print("===> Epoch[{}]({}/{}): Loss: {:.4f}, Error: ({:.4f} {:.4f} {:.4f})".format(epoch, iteration, len(training_data_loader), loss.item(), error0.item(), error1.item(), error2.item()))
sys.stdout.flush()
print("===> Epoch {} Complete: Avg. Loss: {:.4f}, Avg. Error: ({:.4f} {:.4f} {:.4f})".format(epoch, epoch_loss / valid_iteration,epoch_error0/valid_iteration,epoch_error1/valid_iteration,epoch_error2/valid_iteration))
def val():
epoch_loss1 = 0
epoch_loss2 = 0
epoch_loss3 = 0
epoch_loss4 = 0
valid_iteration = 0
model.eval()
for iteration, batch in enumerate(testing_data_loader):
input1, input2, target = Variable(batch[0],requires_grad=False), Variable(batch[1], requires_grad=False), Variable(batch[2], requires_grad=False)
if cuda:
input1 = input1.cuda()
input2 = input2.cuda()
target = target.cuda()
target=torch.squeeze(target,1)
mask = target < opt.max_disp
mask.detach_()
valid=target[mask].size()[0]
if valid>0:
with torch.no_grad():
disp0, disp1, disp2 = model(input1,input2)
error0 = torch.mean(torch.abs(disp0[mask] - target[mask]))
error1 = torch.mean(torch.abs(disp1[mask] - target[mask]))
error2 = torch.mean(torch.abs(disp2[mask] - target[mask]))
epoch_loss += loss.item()
valid_iteration += 1
epoch_error0 += error0.item()
epoch_error1 += error1.item()
epoch_error2 += error2.item()
print("===> Test({}/{}): Error: ({:.4f} {:.4f} {:.4f})".format(iteration, len(testing_data_loader), error0.item(), error1.item(), error2.item()))
print("===> Test: Avg. Error: ({:.4f} {:.4f} {:.4f})".format(epoch_error0/valid_iteration, epoch_error1/valid_iteration, epoch_error2/valid_iteration))
return epoch_error2/valid_iteration
def save_checkpoint(save_path, epoch,state, is_best):
filename = save_path + "_epoch_{}.pth".format(epoch)
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, save_path + '_best.pth')
print("Checkpoint saved to {}".format(filename))
def adjust_learning_rate(optimizer, epoch):
if epoch <= 400:
lr = opt.lr
else:
lr = opt.lr*0.1
print(lr)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
if __name__ == '__main__':
error=100
for epoch in range(1, opt.nEpochs + 1):
# if opt.kitti or opt.kitti2015:
adjust_learning_rate(optimizer, epoch)
train(epoch)
is_best = False
# loss=val()
# if loss < error:
# error=loss
# is_best = True
if opt.kitti or opt.kitti2015:
if epoch%50 == 0 and epoch >= 300:
save_checkpoint(opt.save_path, epoch,{
'epoch': epoch,
'state_dict': model.state_dict(),
'optimizer' : optimizer.state_dict(),
}, is_best)
else:
if epoch>=8:
save_checkpoint(opt.save_path, epoch,{
'epoch': epoch,
'state_dict': model.state_dict(),
'optimizer' : optimizer.state_dict(),
}, is_best)
save_checkpoint(opt.save_path, opt.nEpochs,{
'epoch': opt.nEpochs,
'state_dict': model.state_dict(),
'optimizer' : optimizer.state_dict(),
}, is_best)