diff --git a/prody/ensemble/ensemble.py b/prody/ensemble/ensemble.py index 5f1426566..06e0ab8e2 100644 --- a/prody/ensemble/ensemble.py +++ b/prody/ensemble/ensemble.py @@ -11,6 +11,7 @@ from prody.atomic import Atomic, sliceAtoms from prody.atomic.atomgroup import checkLabel from prody.measure import getRMSD, calcDeformVector +from prody.proteins import EMDMAP from prody.utilities import importLA, checkCoords, checkWeights, copy, isListLike from .conformation import * @@ -899,3 +900,100 @@ def getDataType(self, label): return self._data[label].dtype except KeyError: return None + + def filterConformers(self, ref=None, target=None, **kwargs): + """Filter conformers to only include those towards *target*. + + If target is an atomic object, then RMSD is used. + If it's an EM density map, then deltaCCC is used.""" + if ref is None: + ref = self.getAtoms() + if ref is None: + raise ValueError('Please set a ref for filtering.') + else: + LOGGER.info('Using structure A as ref') + + if target is None: + if hasattr(self, 'getAtomsB'): + LOGGER.info('Using structure B as target') + target = self.getAtomsB() + if target is None: + raise ValueError('Please set a target for filtering.') + + if self._confs is None or self._coords is None: + return None + + n = 0 + n_csets = self.numCoordsets() + + if isinstance(target, Atomic): + LOGGER.info('Using Atomic target and RMSD for filtering') + + indices = self._indices + if indices is None: + indices = np.arange(self._confs.shape[1]) + + weights = self._weights[indices] if self._weights is not None else None + rmsds = calcRMSD(target, self._confs[:, indices], weights) + rmsd_ref = calcRMSD(target, ref) + + LOGGER.progress('Filtering the ensemble...', n_csets, '_prody_FilterEnsemble') + for i, rmsd in enumerate(reversed(rmsds)): + curr_conf = n_csets - i - 1 + LOGGER.update(i + 1, label='_prody_FilterEnsemble') + if rmsd > rmsd_ref: + self.delCoordset(curr_conf) + n += 1 + else: + try: + from TEMPy.maps.em_map import Map + from TEMPy.protein.structure_blurrer import StructureBlurrer + from TEMPy.protein.scoring_functions import ScoringFunctions + except: + raise ImportError("TEMPy is needed to filter by a non-Atomic target") + + if isinstance(target, EMDMAP): + target = target.toTEMPyMap() + + if isinstance(target, Map): + LOGGER.info('Using EM map target and CCC for filtering') + + resolution = kwargs.get('resolution', 5) + blurrer = StructureBlurrer() + scorer = ScoringFunctions() + + if not isinstance(ref, Atomic): + coords = getCoords(ref) + ref = self.atoms.copy() + ref.setCoords(coords) + + ref_tempy = ref.toTEMPyStructure() + ref_blurred = blurrer.gaussian_blur(ref_tempy, resolution, target, + filename=ref.getTitle()+'.mrc') + ref_ccc = scorer.CCC(ref_blurred, target) + + conf = self.getAtoms().copy() + + LOGGER.progress('Filtering the ensemble...', n_csets, '_prody_FilterEnsemble') + for i, coordset in enumerate(reversed(self.getCoordsets())): + curr_conf = n_csets - i - 1 + LOGGER.update(i + 1, label='_prody_FilterEnsemble') + conf.setCoords(coordset) + blurred_conf = blurrer.gaussian_blur(conf.toTEMPyStructure(), + resolution, target, + filename='{0}_{1}'.format(conf.getTitle(), + curr_conf)) + ccc = scorer.CCC(blurred_conf, target) + if ccc < ref_ccc: + self.delCoordset(curr_conf) + n += 1 + else: + raise TypeError('target should be an Atomic or EM density map object') + + LOGGER.finish() + if n == 1: + LOGGER.info('{0} conformer removed, leaving {1} conformers remaining'.format(n, self.numConfs())) + elif self.numConfs() == 1: + LOGGER.info('{0} conformers removed, leaving {1} conformer remaining'.format(n, self.numConfs())) + else: + LOGGER.info('{0} conformers removed, leaving {1} conformers remaining'.format(n, self.numConfs()))