-
Notifications
You must be signed in to change notification settings - Fork 81
/
Copy pathMessageFunction.py
281 lines (211 loc) · 8.69 KB
/
MessageFunction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
#!/usr/bin/python
# -*- coding: utf-8 -*-
"""
MessageFunction.py: Propagates a message depending on two nodes and their common edge.
Usage:
"""
from __future__ import print_function
# Own modules
import datasets
from models.nnet import NNet
import numpy as np
import os
import argparse
import time
import torch
import torch.nn as nn
from torch.autograd.variable import Variable
__author__ = "Pau Riba, Anjan Dutta"
__email__ = "[email protected], [email protected]"
class MessageFunction(nn.Module):
# Constructor
def __init__(self, message_def='duvenaud', args={}):
super(MessageFunction, self).__init__()
self.m_definition = ''
self.m_function = None
self.args = {}
self.__set_message(message_def, args)
# Message from h_v to h_w through e_vw
def forward(self, h_v, h_w, e_vw, args=None):
return self.m_function(h_v, h_w, e_vw, args)
# Set a message function
def __set_message(self, message_def, args={}):
self.m_definition = message_def.lower()
self.m_function = {
'duvenaud': self.m_duvenaud,
'ggnn': self.m_ggnn,
'intnet': self.m_intnet,
'mpnn': self.m_mpnn,
'mgc': self.m_mgc,
'bruna': self.m_bruna,
'defferrard': self.m_deff,
'kipf': self.m_kipf
}.get(self.m_definition, None)
if self.m_function is None:
print('WARNING!: Message Function has not been set correctly\n\tIncorrect definition ' + message_def)
quit()
init_parameters = {
'duvenaud': self.init_duvenaud,
'ggnn': self.init_ggnn,
'intnet': self.init_intnet,
'mpnn': self.init_mpnn
}.get(self.m_definition, lambda x: (nn.ParameterList([]), nn.ModuleList([]), {}))
self.learn_args, self.learn_modules, self.args = init_parameters(args)
self.m_size = {
'duvenaud': self.out_duvenaud,
'ggnn': self.out_ggnn,
'intnet': self.out_intnet,
'mpnn': self.out_mpnn
}.get(self.m_definition, None)
# Get the name of the used message function
def get_definition(self):
return self.m_definition
# Get the message function arguments
def get_args(self):
return self.args
# Get Output size
def get_out_size(self, size_h, size_e, args=None):
return self.m_size(size_h, size_e, args)
# Definition of various state of the art message functions
# Duvenaud et al. (2015), Convolutional Networks for Learning Molecular Fingerprints
def m_duvenaud(self, h_v, h_w, e_vw, args):
m = torch.cat([h_w, e_vw], 2)
return m
def out_duvenaud(self, size_h, size_e, args):
return size_h + size_e
def init_duvenaud(self, params):
learn_args = []
learn_modules = []
args = {}
return nn.ParameterList(learn_args), nn.ModuleList(learn_modules), args
# Li et al. (2016), Gated Graph Neural Networks (GG-NN)
def m_ggnn(self, h_v, h_w, e_vw, opt={}):
m = Variable(torch.zeros(h_w.size(0), h_w.size(1), self.args['out']).type_as(h_w.data))
for w in range(h_w.size(1)):
if torch.nonzero(e_vw[:, w, :].data).size():
for i, el in enumerate(self.args['e_label']):
ind = (el == e_vw[:,w,:]).type_as(self.learn_args[0][i])
parameter_mat = self.learn_args[0][i][None, ...].expand(h_w.size(0), self.learn_args[0][i].size(0),
self.learn_args[0][i].size(1))
m_w = torch.transpose(torch.bmm(torch.transpose(parameter_mat, 1, 2),
torch.transpose(torch.unsqueeze(h_w[:, w, :], 1),
1, 2)), 1, 2)
m_w = torch.squeeze(m_w)
m[:,w,:] = ind.expand_as(m_w)*m_w
return m
def out_ggnn(self, size_h, size_e, args):
return self.args['out']
def init_ggnn(self, params):
learn_args = []
learn_modules = []
args = {}
args['e_label'] = params['e_label']
args['in'] = params['in']
args['out'] = params['out']
# Define a parameter matrix A for each edge label.
learn_args.append(nn.Parameter(torch.randn(len(params['e_label']), params['in'], params['out'])))
return nn.ParameterList(learn_args), nn.ModuleList(learn_modules), args
# Battaglia et al. (2016), Interaction Networks
def m_intnet(self, h_v, h_w, e_vw, args):
m = torch.cat([h_v[:, None, :].expand_as(h_w), h_w, e_vw], 2)
b_size = m.size()
m = m.view(-1, b_size[2])
m = self.learn_modules[0](m)
m = m.view(b_size[0], b_size[1], -1)
return m
def out_intnet(self, size_h, size_e, args):
return self.args['out']
def init_intnet(self, params):
learn_args = []
learn_modules = []
args = {}
args['in'] = params['in']
args['out'] = params['out']
learn_modules.append(NNet(n_in=params['in'], n_out=params['out']))
return nn.ParameterList(learn_args), nn.ModuleList(learn_modules), args
# Gilmer et al. (2017), Neural Message Passing for Quantum Chemistry
def m_mpnn(self, h_v, h_w, e_vw, opt={}):
# Matrices for each edge
edge_output = self.learn_modules[0](e_vw)
edge_output = edge_output.view(-1, self.args['out'], self.args['in'])
h_w_rows = h_w[..., None].expand(h_w.size(0), h_v.size(1), h_w.size(1)).contiguous()
h_w_rows = h_w_rows.view(-1, self.args['in'])
h_multiply = torch.bmm(edge_output, torch.unsqueeze(h_w_rows,2))
m_new = torch.squeeze(h_multiply)
return m_new
def out_mpnn(self, size_h, size_e, args):
return self.args['out']
def init_mpnn(self, params):
learn_args = []
learn_modules = []
args = {}
args['in'] = params['in']
args['out'] = params['out']
# Define a parameter matrix A for each edge label.
learn_modules.append(NNet(n_in=params['edge_feat'], n_out=(params['in']*params['out'])))
return nn.ParameterList(learn_args), nn.ModuleList(learn_modules), args
# Kearnes et al. (2016), Molecular Graph Convolutions
def m_mgc(self, h_v, h_w, e_vw, args):
m = e_vw
return m
# Laplacian based methods
# Bruna et al. (2013)
def m_bruna(self, h_v, h_w, e_vw, args):
# TODO
m = []
return m
# Defferrard et al. (2016)
def m_deff(self, h_v, h_w, e_vw, args):
# TODO
m = []
return m
# Kipf & Welling (2016)
def m_kipf(self, h_v, h_w, e_vw, args):
# TODO
m = []
return m
if __name__ == '__main__':
# Parse optios for downloading
parser = argparse.ArgumentParser(description='QM9 Object.')
# Optional argument
parser.add_argument('--root', nargs=1, help='Specify the data directory.', default=['./data/qm9/dsgdb9nsd/'])
args = parser.parse_args()
root = args.root[0]
files = [f for f in os.listdir(root) if os.path.isfile(os.path.join(root, f))]
idx = np.random.permutation(len(files))
idx = idx.tolist()
valid_ids = [files[i] for i in idx[0:10000]]
test_ids = [files[i] for i in idx[10000:20000]]
train_ids = [files[i] for i in idx[20000:]]
data_train = datasets.Qm9(root, train_ids)
data_valid = datasets.Qm9(root, valid_ids)
data_test = datasets.Qm9(root, test_ids)
# Define message
m = MessageFunction('duvenaud')
print(m.get_definition())
start = time.time()
# Select one graph
g_tuple, l = data_train[0]
g, h_t, e = g_tuple
m_t = {}
for v in g.nodes_iter():
neigh = g.neighbors(v)
m_neigh = type(h_t)
for w in neigh:
if (v,w) in e:
e_vw = e[(v, w)]
else:
e_vw = e[(w, v)]
m_v = m.forward(h_t[v], h_t[w], e_vw)
if len(m_neigh):
m_neigh += m_v
else:
m_neigh = m_v
m_t[v] = m_neigh
end = time.time()
print('Input nodes')
print(h_t)
print('Message')
print(m_t)
print('Time')
print(end - start)