-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexperiments.py
423 lines (373 loc) · 18.7 KB
/
experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
import json
import os
import rdflib
from collections import defaultdict
from geopy import distance
from tqdm import tqdm
from incremental import *
from kg2vec import KGEmbedder
from kgcompare import KGCompare
def get_finished_nodes(directory, fold):
"""
Get the nodes that are already associated with transfer results.
:param directory: directory to go look for nodes
:param fold: fold inside the directory
:return:
"""
worst_nodes, best_nodes, double_nodes = set(), set(), set()
node_to_files = defaultdict(set)
node_dir = os.path.join(directory, fold)
for filename in os.listdir(node_dir):
els = filename.split("_")
if "best" in filename:
best_node = els[-3] + "_" + els[-2]
node_to_files[best_node].add(filename)
if best_node in best_nodes:
double_nodes.add(best_node)
best_nodes.add(best_node)
elif "worst" in filename:
worst_node = els[-3] + "_" + els[-2]
node_to_files[worst_node].add(filename)
if worst_node in worst_nodes:
double_nodes.add(worst_node)
worst_nodes.add(worst_node)
nodes = best_nodes.intersection(worst_nodes)
print("incomplete nodes:", best_nodes.symmetric_difference(worst_nodes))
print("double nodes:", double_nodes)
for node in best_nodes.symmetric_difference(worst_nodes):
for filename in node_to_files[node]:
print("Remove incomplete node", filename)
os.remove(os.path.join(node_dir, filename))
for node in double_nodes:
for filename in node_to_files[node]:
print("Remove double node", filename)
os.remove(os.path.join(node_dir, filename))
return nodes
def get_geo_bounded_nodes(names, coordinates):
"""
Get a set of nodes that are non-overlapping within a given radius.
:param names: node names
:param coordinates: node coordinates
:return:
"""
if os.path.exists("geobounded.json"):
with open("geobounded.json", "r") as jsonfile:
return json.load(jsonfile)
geonames = [name for name in names if name in coordinates.keys()]
# use radius of brussels to isolate nodes
# successively add nodes and see if their radii intersect
# according to wikipedia, Brussels has a surface area of 162.4km^2
# for simplicity's sake, we assume this is a circular area
# we derive the radius as r = root(A / pi)
r = math.sqrt(162.4 / math.pi)
chosen_so_far = list()
for name in geonames:
intersection = False
for cname in chosen_so_far:
ref_lat, ref_lon = coordinates[name]
lat, lon = coordinates[cname]
dist = distance.distance((ref_lat, ref_lon), (lat, lon)).km
intersection = dist <= r
if not intersection:
chosen_so_far.append(name)
print("Found", len(chosen_so_far), "non-intersecting nodes... among", len(geonames), "and", len(names), "original geonodes/nodes")
with open("geobounded.json", "w") as jsonfile:
json.dump(chosen_so_far, jsonfile)
return chosen_so_far
def run_random_experiment(names, coordinates, incremental=False, geo_bounded=False, nr_of_folds=1):
"""
Run a cross-context experiment without a selection criterion.
:param names: node names
:param coordinates: node coordinates
:param incremental: not supported
:param geo_bounded: whether we use geo-bounded nodes or not
:param nr_of_folds: number of folds we want to use
:return:
"""
if geo_bounded:
names = get_geo_bounded_nodes(names, coordinates)
N = len(names) # population size
for i in range(nr_of_folds):
selection = random.sample(names, N)
indices = [names.index(s) for s in selection]
nodes = get_finished_nodes("random", "fold_" + str(i + 1))
for j, name in enumerate(selection):
print("\n\n### START NEW RANDOM COMPARISON ###\n\n")
if name in nodes:
print("skipping", name)
continue
rd_idx = names.index(name)
while rd_idx == names.index(name):
rd_idx = random.sample(indices, 1)[0]
to_node = name
from_node = names[rd_idx]
print("Transferring from random context", from_node, "to", to_node)
anoms, aucs_close, aucs_close_dest = transfer_from_to(from_node, to_node, best=True, incremental=incremental, repo="random/fold_" + str(i + 1) + "/")
def run_semantic_distance_experiment(names, files, comparator, coordinates, incremental=False, geo_bounded=False, nr_of_folds=1):
"""
Run a cross-context experiment using a selection criterion based on the distance between context graphs.
:param names: node names
:param files: names of files containing rdf context graphs
:param comparator: instance of KGCompare
:param coordinates: node coordinates
:param incremental: not supported
:param geo_bounded: whether we use geo-bounded nodes or not
:param nr_of_folds: number of folds we want to use
:return:
"""
if geo_bounded:
new_names = get_geo_bounded_nodes(names, coordinates)
indices = [i for i, name in enumerate(names) if name in new_names]
new_files = [files[i] for i in indices]
new_graphs = []
for f in new_files:
if os.path.isfile(f):
graph = rdflib.Graph()
ending = f.split('.')[-1]
if ending == "ttl":
ending = "n3"
graph.parse(f, format=ending)
new_graphs.append(graph)
json_dir = os.path.join("graphs", "json_relabeled")
embedder = KGEmbedder(new_graphs, new_names, json_dir)
embedder.embed()
names = new_names
files = new_files
comparator = KGCompare(embedder)
N = len(names) # population size
for i in range(nr_of_folds):
selection = random.sample(names, N)
indices = [names.index(s) for s in selection]
nodes = get_finished_nodes("semantic_distance", "fold_" + str(i + 1))
for j, name in enumerate(selection):
print("\n\n### START NEW SEMANTIC COMPARISON ###\n\n")
if name in nodes:
print("skipping", name)
continue
best_idx = comparator.get_most_similar(indices[j])[0]
worst_idx = comparator.get_least_similar(indices[j])[0]
to_node = name
best_from_node = names[best_idx]
worst_from_node = names[worst_idx]
print("Transferring from nearest context", best_from_node, "to", to_node)
anoms, aucs_close, aucs_close_dest = transfer_from_to(best_from_node, to_node, best=True, incremental=incremental, repo="semantic_distance/fold_" + str(i + 1) + "/")
print("Transferring from furthest context", worst_from_node, "to", to_node)
anoms, aucs_far, aucs_far_dest = transfer_from_to(worst_from_node, to_node, best=False, incremental=incremental, repo="semantic_distance/fold_" + str(i + 1) + "/")
def run_ts_distance_experiment(names, coordinates, raw_data_location, incremental=False, geo_bounded=False, nr_of_folds=1):
"""
Run a cross-context experiment using a selection criterion based on the distance between time series.
:param names: node names
:param coordinates: node coordinates
:param incremental: not supported
:param geo_bounded: whether we use geo-bounded nodes or not
:param nr_of_folds: number of folds we want to use
:return:
"""
if geo_bounded:
names = get_geo_bounded_nodes(names, coordinates)
def get_ts_distances(name):
distances = np.zeros((len(names)))
for i, other_name in tqdm(enumerate(names)):
if name == other_name:
distances[i] = -1
else:
locale1, node1 = name.split("_")[0], name.split("_")[1]
locale2, node2 = other_name.split("_")[0], other_name.split("_")[1]
series1 = FeatureExtractor(data_dir=raw_data_location, locale=locale1, nodes=[node1]).nodes[node1].fillna(0).drop(columns=['time']).values
series2 = FeatureExtractor(data_dir=raw_data_location, locale=locale2, nodes=[node2]).nodes[node2].fillna(0).drop(columns=['time']).values
# select the smallest first 40% (portion of the training set)
# ind1 = (series1.shape[0] * 0.6 * 0.8) * 0.4 # take into account test and validation sets
# ind2 = (series2.shape[0] * 0.6 * 0.8) * 0.4 # take into account test and validation sets
# select the whole training set
ind1 = (series1.shape[0] * 0.6 * 0.8)
ind2 = (series2.shape[0] * 0.6 * 0.8)
min_ind = int(min(ind1, ind2))
series1 = series1[:min_ind]
series2 = series2[:min_ind]
def euclidean(list1, list2):
sum_of = 0
for x, y in zip(list1, list2):
ans = (x - y)**2
sum_of += ans
return sum_of**(1/2)
distances[i] = euclidean(series1.reshape(-1, 1).squeeze(), series2.reshape(-1, 1).squeeze())
# make sure that that the distance to self can never be selected as minimum or maximum
distances[names.index(name)] = np.mean(distances)
return distances
N = len(names) # population size
for i in range(nr_of_folds):
selection = random.sample(names, N)
indices = [names.index(s) for s in selection]
nodes = get_finished_nodes("ts_distance", "fold_" + str(i + 1))
for j, name in enumerate(selection):
print("\n\n### START NEW TS COMPARISON ###\n\n")
if name in nodes:
print("skipping", name)
continue
ts_distances = get_ts_distances(name)
best_idx = np.argmin(ts_distances)
worst_idx = np.argmax(ts_distances)
to_node = name
best_from_node = names[best_idx]
worst_from_node = names[worst_idx]
print("Transferring from nearest context", best_from_node, "to", to_node)
anoms, mae_close, mae_close_dest = transfer_from_to(best_from_node, to_node, best=True, incremental=incremental, repo="ts_distance/fold_" + str(i + 1) + "/")
print("Transferring from furthest context", worst_from_node, "to", to_node)
anoms, mae_far, mae_far_dest = transfer_from_to(worst_from_node, to_node, best=False, incremental=incremental, repo="ts_distance/fold_" + str(i + 1) + "/")
def run_geo_distance_experiment(names, coordinates, incremental=False, density=1.0, radius_based=False, nr_of_folds=1):
"""
Run a cross-context experiment using a selection criterion based on the distance between geo-locations.
:param names: node names
:param coordinates: node coordinates
:param incremental: not supported
:param density: the percentage of nodes we wish to retain
:param radius_based: whether or not we wish to make sure the nodes are geo-bounded
:param nr_of_folds: number of folds we want to use
:return:
"""
percentage = str(int(density * 100))
subnames = [name for name in names if name in coordinates.keys()]
if not radius_based:
subnames = random.sample(subnames, int(density * len(subnames)))
else:
subnames = get_geo_bounded_nodes(names, coordinates)
def get_geo_distances(name):
ref_lat, ref_lon = coordinates[name]
distances = np.zeros((len(subnames)))
for i, other_name in tqdm(enumerate(subnames)):
if name == other_name:
distances[i] = -1
else:
lat, lon = coordinates[other_name]
distances[i] = distance.distance((ref_lat, ref_lon), (lat, lon)).meters
# make sure that that the distance to self can never be selected as minimum or maximum
distances[subnames.index(name)] = np.mean(distances)
return distances
N = len(subnames) # population size
for i in range(nr_of_folds):
# we sample from coordinates to ensure that each name can be localized
selection = random.sample(subnames, N)
indices = [subnames.index(s) for s in selection]
nodes = get_finished_nodes("geo_distance_" + percentage, "fold_" + str(i + 1))
for j, name in enumerate(selection):
print("\n\n### START NEW GEO COMPARISON ###\n\n")
if name in nodes:
print("skipping", name)
continue
geo_distances = get_geo_distances(name)
best_idx = np.argmin(geo_distances)
worst_idx = np.argmax(geo_distances)
to_node = name
best_from_node = subnames[best_idx]
worst_from_node = subnames[worst_idx]
print("Transferring from nearest context", best_from_node, "to", to_node)
anoms, mae_close, mae_close_dest = transfer_from_to(best_from_node, to_node, best=True, incremental=incremental, repo="geo_distance_" + percentage + "/fold_" + str(i + 1) + "/")
print("Transferring from furthest context", worst_from_node, "to", to_node)
anoms, mae_far, mae_far_dest = transfer_from_to(worst_from_node, to_node, best=False, incremental=incremental, repo="geo_distance_" + percentage + "/fold_" + str(i + 1) + "/")
def summary(scores=None, incremental=False, repo=""):
"""
Get a summary of scores.
:param scores: matrix of scores
:param incremental: not supported
:param repo: where the score may be located if not matrix is provided
:return:
"""
node_map = defaultdict(list)
if scores is not None:
# in case of an array of multiple arrays
print("### MEAN OF SCORES ###")
print(np.mean(scores, axis=0))
print("### STD OF SCORES ###")
print(np.std(scores, axis=0))
return np.mean(scores, axis=0), np.std(scores, axis=0)
else:
best_scores = np.zeros((3, 3))
worst_scores = np.zeros((3, 3))
if incremental:
best_scores = np.zeros((5, 3))
worst_scores = np.zeros((5, 3))
best_roc_aucs1, best_roc_aucs2, best_roc_aucs3 = list(), list(), list()
worst_roc_aucs1, worst_roc_aucs2, worst_roc_aucs3 = list(), list(), list()
best_avg_prec1, best_avg_prec2, best_avg_prec3 = list(), list(), list()
worst_avg_prec1, worst_avg_prec2, worst_avg_prec3 = list(), list(), list()
nr_best_files = 0
nr_worst_files = 0
for filename in os.listdir(repo):
if "csv" in filename:
if "best" in filename:
index = 0
with open(os.path.join(repo, filename), 'r') as csvfile:
r = csv.reader(csvfile, delimiter=',')
scs = list()
next(r)
for row in r:
if not np.isnan(float(row[1])) and \
not np.isnan(float(row[2])) and \
not np.isnan(float(row[3])):
scs.append((float(row[1]), float(row[2]), float(row[3])))
if index == 0:
best_roc_aucs1.append(float(row[1]))
best_avg_prec1.append(float(row[2]))
if index == 1:
best_roc_aucs2.append(float(row[1]))
best_avg_prec2.append(float(row[2]))
if index == 2:
best_roc_aucs3.append(float(row[1]))
best_avg_prec3.append(float(row[2]))
index += 1
index = 0
name = filename.split("_")
if len(scs) == 3:
for sc in scs:
best_scores[index, 0] += sc[0]
best_scores[index, 1] += sc[1]
best_scores[index, 2] += sc[2]
index += 1
node_map[name[-3] + "_" + name[-2]].append(("BEST", scs[0][0], scs[1][0], scs[2][0]))
nr_best_files += 1
else:
index = 0
with open(os.path.join(repo, filename), 'r') as csvfile:
r = csv.reader(csvfile, delimiter=',')
scs = list()
next(r)
for row in r:
if not np.isnan(float(row[1])) and \
not np.isnan(float(row[2])) and \
not np.isnan(float(row[3])):
scs.append((float(row[1]), float(row[2]), float(row[3])))
if index == 0:
worst_roc_aucs1.append(float(row[1]))
worst_avg_prec1.append(float(row[2]))
if index == 1:
worst_roc_aucs2.append(float(row[1]))
worst_avg_prec2.append(float(row[2]))
if index == 2:
worst_roc_aucs3.append(float(row[1]))
worst_avg_prec3.append(float(row[2]))
index += 1
index = 0
name = filename.split("_")
if len(scs) == 3:
for sc in scs:
worst_scores[index, 0] += sc[0]
worst_scores[index, 1] += sc[1]
worst_scores[index, 2] += sc[2]
index += 1
node_map[name[-3] + "_" + name[-2]].append(("WORST", scs[0][0], scs[1][0], scs[2][0]))
nr_worst_files += 1
best_scores /= nr_best_files
worst_scores /= nr_worst_files
print("nr of best results", nr_best_files)
print("nr of worst results", nr_worst_files)
print("### SCORES FOR BEST TRANSFERS ###")
print(best_scores)
print(np.std(best_roc_aucs1), np.std(best_avg_prec1))
print(np.std(best_roc_aucs2), np.std(best_avg_prec2))
print(np.std(best_roc_aucs3), np.std(best_avg_prec3))
print("### SCORES FOR WORST TRANSFERS ###")
print(worst_scores)
print(np.std(worst_roc_aucs1), np.std(worst_avg_prec1))
print(np.std(worst_roc_aucs2), np.std(worst_avg_prec2))
print(np.std(worst_roc_aucs3), np.std(worst_avg_prec3))
return best_scores, worst_scores