-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathThree sum and result total =0
73 lines (53 loc) · 1.81 KB
/
Three sum and result total =0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
Given an integer array nums, return all the triplets [nums[i], nums[j], nums[k]] such that i != j, i != k, and j != k, and nums[i] + nums[j] + nums[k] == 0.
Notice that the solution set must not contain duplicate triplets.
Example 1:
Input: nums = [-1,0,1,2,-1,-4]
Output: [[-1,-1,2],[-1,0,1]]
Explanation:
nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0.
nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0.
nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0.
The distinct triplets are [-1,0,1] and [-1,-1,2].
Notice that the order of the output and the order of the triplets does not matter.
Example 2:
Input: nums = [0,1,1]
Output: []
Explanation: The only possible triplet does not sum up to 0.
Example 3:
Input: nums = [0,0,0]
Output: [[0,0,0]]
Explanation: The only possible triplet sums up to 0.
Constraints:
3 <= nums.length <= 3000
-105 <= nums[i] <= 105
solution:
class Solution {
public List<List<Integer>> threeSum(int[] nums) {
List<List<Integer>> result = new ArrayList<>();
Arrays.sort(nums);
for (int i = 0; i < nums.length - 2 && nums[i] <= 0; i++) {
if (i != 0 && nums[i] == nums[i - 1])
continue;
twoSum(-nums[i], nums, i + 1, result);
}
return result;
}
private void twoSum(int target, int[] nums, int startingIndex, List<List<Integer>> result) {
int l = startingIndex, r = nums.length - 1;
while (l < r) {
if (nums[l] + nums[r] > target) {
r--;
continue;
}
if (nums[l] + nums[r] < target) {
l++;
continue;
}
result.add(Arrays.asList(-target, nums[l], nums[r]));
l++;
r--;
while (r > l && nums[r] == nums[r + 1])
r--;
}
}
}