-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnccs_all.m
73 lines (51 loc) · 1.62 KB
/
nccs_all.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
N=4
sigma2=N*(1-(pi*pi/16))
sigma=sqrt(sigma2)
lambda=(N*pi/4)*(N*pi/4)
a=sqrt(lambda)/sigma
Gamma_barldb= [8:2:40];
Gamma_barldb1=Gamma_barldb/10;
Gamma_barl=10.^Gamma_barldb1;
b1=sqrt(100)./(sqrt(Gamma_barl));
b=b1./sigma;
b=round(b*100)/100;
writematrix(b,'b.txt');
F1=[0.51707, 0.288695, 0.152161, 0.0811673, 0.045749, 0.0268879, 0.016934, 0.0113608, 0.00823404, 0.00592704, 0.00454716, 0.00348393, 0.00266403, 0.00204179, 0.00159039, 0.00129518, 0.0010036]
semilogy(Gamma_barldb,F1.^1,'k--','LineWidth',1.3,'MarkerFaceColor','auto');grid on;hold on;
%yticks(10^-10:1)
hold on
semilogy(Gamma_barldb,F1.^2,'g--','LineWidth',1.3,'MarkerFaceColor','auto');grid on;hold on;
%plot(gammabar3,10*log10(F1.^2),'r')
sigma2=N*(1-(pi*pi/16));
sigma=sqrt(sigma2);
lambda=(N*pi/4)*(N*pi/4);
e1=exp(-lambda/(2*sigma2));
e=20;
b1=100/(2*sigma2);
b=b1./Gamma_barl;
o=0;
for eta=0:e
a1=(-1)^eta;
a2=factorial(eta+e-1);
a3=factorial(e-eta)*factorial(eta);
a4=e^(1-2*eta);
a5=gamma(eta+1/2);
f1=a1*a2*a4/(a3*a5);
a6=(1i)^(2*eta);
a7=1/(2*sigma2);
a8=a7^eta;
a9=lambda^eta;
f2=f1*a6*a7*a8*a9;
f3=gammainc(b,eta+1/2);
disp(f3)
o=o+f2*f3;
end
F1=e1*o;
semilogy(Gamma_barldb,F1.^1,'r--','LineWidth',1.3,'MarkerFaceColor','auto');grid on;hold on;
%yticks(10^-10:1)
hold on
semilogy(Gamma_barldb,F1.^2,'b--','LineWidth',1.3,'MarkerFaceColor','auto');grid on;hold on;
legend("L=1,exact","L=2,exact","L=1,asymp","L=2, asymp");
xlabel("Gamma bar (dB)")
ylabel("Outage Probability")
title("Exact & Asymptotic Analysis NCCS");