forked from wrf-model/TechNote
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathappena.tex
29 lines (26 loc) · 2.1 KB
/
appena.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
\chapter{Physical Constants}
\label{physical_constants}
The following is a list of physical constants used in the model.
\\[3ex]
\begin{eqnarray*}
\begin{array}{lcll}
\pi & = & 3.1415926 & \mathrm{Pi} \\
k & = & 0.4 & \mathrm{Von \: Karman \: constant} \\
r_e & = & 6.370 \times 10^{6} \quad\mathrm{m} & \mathrm{ Radius \: of \: earth} \\
g & = & 9.81 \quad\mathrm{m \: s^{-2}} & \mathrm{ Acceleration \: due \: to \: gravity}\\
\Omega_{e} & = & 7.2921 \times 10^{-5} \quad\mathrm{s^{-1}} & \mathrm{ Angular \: rotation \: rate \: of \: the \: earth}\\
\sigma_{B} & = & 5.67051 \times 10^{-8} \quad\mathrm{W \: m^{-2} \: K^{-4}} & \mathrm{ Stefan-Boltzmann \: constant}\\
R_{d} & = & 287 \quad\mathrm{J \: kg^{-1} \: K^{-1}} & \mathrm{ Gas \: constant \: for \: dry \: air}\\
R_{v} & = & 461.6 \quad\mathrm{J \: kg^{-1} \: K^{-1}} & \mathrm{ Gas \: constant \: for \: water \: vapor}\\
c_{p} & = & 7 \times R_{d}/2 \quad\mathrm{J \: kg^{-1} \: K^{-1}} & \mathrm{ Specific \: heat \: of \: dry \: air \: at \: constant \: pressure}\\
c_{v} & = & c_{p}-R_{d} \quad\mathrm{J \: kg^{-1} \: K^{-1}} & \mathrm{ Specific \: heat \: of \: dry \: air \: at \: constant \: volume}\\
c_{pv} & = & 4 \times R_{v} \quad\mathrm{J \: kg^{-1} \: K^{-1}} & \mathrm{ Specific \: heat \: of \: water \: vapor \: at \: constant \: pressure}\\
c_{vv} & = & c_{pv}-R_{v} \quad\mathrm{J \: kg^{-1} \: K^{-1}} & \mathrm{ Specific \: heat \: of \: water \: vapor \: at \: constant \: volume}\\
c_{liq} & = & 4190 \quad\mathrm{J \: kg^{-1} \: K^{-1}} & \mathrm{ Specific \: heat \: capacity \: of \: water}\\
c_{ice} & = & 2106 \quad\mathrm{J \: kg^{-1} \: K^{-1}} & \mathrm{ Specific \: heat \: capacity \: of \: ice}\\
L_{v} & = & 2.5 \times 10^{6} \quad\mathrm{J \: kg^{-1}} & \mathrm{ Latent \: heat \: of \: vaporization}\\
L_{s} & = & 2.85 \times 10^{6} \quad\mathrm{J \: kg^{-1}} & \mathrm{ Latent \: heat \: of \: sublimation}\\
L_{f} & = & 3.50 \times 10^{5} \quad\mathrm{J \: kg^{-1}} & \mathrm{ Latent \: heat \: of \: fusion}\\
\rho_{w} & = & 1.0 \times 10^{3} \quad\mathrm{kg \: m^{-3}} & \mathrm{ Density \: of \: liquid \: water}\\
\end{array}
\end{eqnarray*}