-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathlPool.h
143 lines (83 loc) · 2.51 KB
/
lPool.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
#ifndef LPOOL_H
#define LPOOL_H
#include "Layer.h"
#include <cmath>
class lPool : public Layer {
private:
//Properties
int p_size;
//Activation matrix
Tensor activation;
//Gradients
Tensor dCdX;
public:
//Constructor
lPool( int in_dim, int in_rows, int in_cols, int p_size ) {
//Set dimensions
this->in_dim = in_dim;
this->out_dim = in_dim;
this->in_rows = in_rows;
this->in_cols = in_cols;
this->p_size = p_size;
out_rows = floor(in_rows / p_size);
out_cols = floor(in_cols / p_size);
//Redimension tensors
in.resize(in_dim, in_rows, in_cols);
out.resize(in_dim, out_rows, out_cols);
activation.resize(in_dim, in_rows, in_cols);
dCdX.resize(in_dim, in_rows, in_cols);
}
//Properties
char getType() { return 'p'; }
Tensor getWeights() { return dCdX; }
//Functions
Tensor feedforward( Tensor in ) {
this->in = in.copy();
activation.set(0);
for (int d = 0; d < in_dim; d++) {
int outx = 0;
for (int m = 0; m < in_rows - p_size + 1; m += p_size) {
int outy = 0;
for (int n = 0; n < in_cols - p_size +1; n += p_size) {
double max = -99999.0; int maxx = 0; int maxy = 0;
for (int i = 0; i < p_size; i++) {
for (int j = 0; j < p_size; j++) {
if (in(d, m + i, n + j) > max) {
max = in(d, m + i, n + j);
maxx = m + i;
maxy = n + j;
}
}
}
out(d, outx, outy) = max;
activation(d, maxx, maxy) = 1;
outy += 1;
}
outx += 1;
}
}
return out;
}
Tensor feedback( Tensor delta ) {
dCdX.set(0);
for (int d = 0; d < in_dim; d++) {
int outx = 0;
for (int m = 0; m < in_rows - p_size + 1; m += p_size) {
int outy = 0;
for (int n = 0; n < in_cols - p_size + 1; n += p_size) {
for (int i = 0; i < p_size; i++) {
for (int j = 0; j < p_size; j++) {
if (abs(activation(d, m + i, n + j) - 1) < 1E-3)
dCdX(d, m + i, n +j) = delta(d, outx, outy);
}
}
outy += 1;
}
outx += 1;
}
}
return dCdX;
}
void updateweights( float rate ) { return; }
};
#endif