-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathruncalc.py
331 lines (237 loc) · 16 KB
/
runcalc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
'''
Author: Alex Yee
Edit History
See Research Journal
'''
import os,sys
import simplejson
import numpy as N
import csv #(Commma Separated Values)
import datetime
from django.http import HttpResponse, HttpResponseRedirect
from django.contrib import auth
from django.contrib.auth.decorators import login_required
from django import forms
from django.core.exceptions import ObjectDoesNotExist
from Alex.ubmatrix import *
def runcalcTheta(request):
requestObject = simplejson.loads(request.POST.keys()[0])
data = requestObject['data']
astar, bstar, cstar, alphastar, betastar, gammastar = star(data[0]['a'], data[0]['b'], data[0]['c'], data[0]['alpha'], data[0]['beta'], data[0]['gamma'])
stars = {'astar': astar, 'bstar': bstar, 'cstar': cstar, 'alphastar': alphastar, 'betastar': betastar, 'gammastar': gammastar}
twothetaarr = []
for i in range(1, len(data)):
twotheta = calcTwoTheta([data[i]['h'], data[i]['k'], data[i]['l']], stars, data[0]['wavelength'])
twothetaarr.append({'twotheta': twotheta})
return HttpResponse(simplejson.dumps(twothetaarr))
def runcalc1(request):
"Calculations for Bisecting mode."
#Strangely, data is sent as a dictionary, where all data is the key and the dictionary's value is random characters.
#Therefore, extracting data from dictionary key
requestObject = simplejson.loads(request.POST.keys()[0])
data = requestObject['data']
#CALCULATING THE B MATRIX AND STARS DICTIONARY
Bmatrix, stars = calculateBStar(float(data[0]['a']), float(data[0]['b']), float(data[0]['c']), float(data[0]['alpha']), float(data[0]['beta']), float(data[0]['gamma']))
UBmatrix = data[0]['UBmatrix']
response = []
#wavelength was a string for some reason...
wavelength = data[0]['wavelength']
#rest of the calculations
for i in range(1, len(data)):
twotheta, theta, omega, chi, phi = calcIdealAngles([data[i]['h'], data[i]['k'], data[i]['l']], UBmatrix, Bmatrix, wavelength, stars)
angles = {'twotheta': twotheta, 'theta':theta, 'omega': omega,'chi':chi, 'phi': phi}
response.append(angles)
return HttpResponse(simplejson.dumps(response))
def runcalc2(request):
"Calculations for Scattering Plane mode"
requestObject = simplejson.loads(request.POST.keys()[0])
data = requestObject['data']
#CALCULATING THE B MATRIX AND STARS DICTIONARY
Bmatrix, stars = calculateBStar(float(data[0]['a']), float(data[0]['b']), float(data[0]['c']), float(data[0]['alpha']), float(data[0]['beta']), float(data[0]['gamma']))
UBmatrix = data[0]['UBmatrix']
response = []
#wavelength was a string for some reason...
#wavelength = float(data[0]['wavelength'])
wavelength = data[0]['wavelength']
chi, phi = calcScatteringPlane ([data[0]['h1'], data[0]['k1'], data[0]['l1']], [data[0]['h2'], data[0]['k2'], data[0]['l2']], UBmatrix, wavelength,stars) #calculate chi and phi (in DEGREES) for the Scattering Plane
#calculations for the desired (h,k,l) vectors
for i in range(1, len(data)):
inPlane = isInPlane([data[0]['h1'], data[0]['k1'], data[0]['l1']], [data[0]['h2'], data[0]['k2'], data[0]['l2']], [data[i]['h'], data[i]['k'], data[i]['l']])
if inPlane:
twotheta, theta, omega = calcIdealAngles2([data[i]['h'], data[i]['k'], data[i]['l']], N.radians(chi), N.radians(phi), UBmatrix, wavelength, stars)
angles = {'inPlane': inPlane, 'twotheta': twotheta, 'theta':theta, 'omega': omega,'chi':chi, 'phi': phi}
response.append(angles)
else: #desired (h,k,l) doesn't lie in the scattering plane
errormessage = 'Error'
response.append(errormessage)
return HttpResponse(simplejson.dumps(response))
def runcalc3(request):
"Calculations for Phi Fixed mode"
requestObject = simplejson.loads(request.POST.keys()[0])
data = requestObject['data']
#CALCULATING THE B MATRIX AND STARS DICTIONARY
Bmatrix, stars = calculateBStar(float(data[0]['a']), float(data[0]['b']), float(data[0]['c']), float(data[0]['alpha']), float(data[0]['beta']), float(data[0]['gamma']))
UBmatrix = data[0]['UBmatrix']
response = []
#rest of the calculations
for i in range(1, len(data)):
twotheta, theta, omega, chi = calcIdealAngles3([data[i]['h'], data[i]['k'], data[i]['l']], UBmatrix, data[0]['wavelength'], N.radians(data[0]['phi']), stars)
angles = {'twotheta': twotheta, 'theta':theta, 'omega': omega,'chi':chi, 'phi': data[0]['phi']}
response.append(angles)
return HttpResponse(simplejson.dumps(response))
def calculateResultsUB(data):
"Calculates and returns the Bmatrx, UBmatrix and stars array. Used to use in the runcalc# methods"
a, b, c, alpha, beta, gamma, h1, k1, l1, twotheta1, theta1, chi1, phi1, h2, k2, l2, twotheta2, theta2, chi2, phi2 = float(data[0]['a']), float(data[0]['b']), float(data[0]['c']), float(data[0]['alpha']), float(data[0]['beta']), float(data[0]['gamma']), float(data[1]['h']), float(data[1]['k']), float(data[1]['l']), float(data[1]['twotheta']), float(data[1]['theta']), float(data[1]['chi']), float(data[1]['phi']), float(data[2]['h']), float(data[2]['k']), float(data[2]['l']), float(data[2]['twotheta']), float(data[2]['theta']), float(data[2]['chi']), float(data[2]['phi'])
#data given as 2 sets of {h,k,l,2theta,theta,chi,phi} and numberFields {a, b, c, alpha, beta, gamma, wavelength}
#UB args: (h1, k1, l1, h2, k2, l2, omega1, chi1, phi1, omega2, chi2, phi2, Bmatrix)
omega1 = theta1 - twotheta1/2
omega2 = theta2 - twotheta2/2
astar, bstar, cstar, alphastar, betastar, gammastar = star(a, b, c, alpha, beta, gamma)
starDict = {'astar': astar, 'bstar': bstar, 'cstar': cstar, 'alphastar': alphastar, 'betastar': betastar, 'gammastar': gammastar}
Bmatrix = calcB(astar,bstar,cstar,alphastar,betastar,gammastar,c, alpha)
UBmatrix = calcUB(h1, k1, l1, h2, k2, l2, omega1, chi1, phi1, omega2, chi2, phi2, Bmatrix)
return Bmatrix, UBmatrix, starDict
def calculateBStar (a, b, c, alpha, beta, gamma):
astar, bstar, cstar, alphastar, betastar, gammastar = star(a, b, c, alpha, beta, gamma)
starDict = {'astar': astar, 'bstar': bstar, 'cstar': cstar, 'alphastar': alphastar, 'betastar': betastar, 'gammastar': gammastar}
Bmatrix = calcB(astar,bstar,cstar,alphastar,betastar,gammastar,c, alpha)
return Bmatrix, starDict
def calculateUB(request):
"Calculates the UB matrix and returns it to the frontend"
requestObject = simplejson.loads(request.POST.keys()[0])
data = requestObject['data']
a, b, c, alpha, beta, gamma, h1, k1, l1, twotheta1, theta1, chi1, phi1, h2, k2, l2, twotheta2, theta2, chi2, phi2 = float(data[2]['a']), float(data[2]['b']), float(data[2]['c']), float(data[2]['alpha']), float(data[2]['beta']), float(data[2]['gamma']), float(data[0]['h']), float(data[0]['k']), float(data[0]['l']), float(data[0]['twotheta']), float(data[0]['theta']), float(data[0]['chi']), float(data[0]['phi']), float(data[1]['h']), float(data[1]['k']), float(data[1]['l']), float(data[1]['twotheta']), float(data[1]['theta']), float(data[1]['chi']), float(data[1]['phi'])
#hardcoding in data for test purposes
#a, b, c, alpha, beta, gamma, h1, k1, l1, omega1, chi1, phi1, h2, k2, l2, omega2, chi2, phi2, wavelength, twotheta1, theta1, twotheta2, theta2 = 3.9091,3.9091,3.9091,90.,90.,90.,1.,1.,0.,0.,89.62,.001,0.,0.,1.,0.,-1.286,131.063, 2.35916, 50.522, 27.116, 35.125, 17.563
#data given as 2 sets of {h,k,l,2theta,theta,chi,phi} and numberFields {a, b, c, alpha, beta, gamma, wavelength}
#UB args: (h1, k1, l1, h2, k2, l2, omega1, chi1, phi1, omega2, chi2, phi2, Bmatrix)
omega1 = theta1 - twotheta1/2
omega2 = theta2 - twotheta2/2
astar, bstar, cstar, alphastar, betastar, gammastar = star(a, b, c, alpha, beta, gamma)
starDict = {'astar': astar, 'bstar': bstar, 'cstar': cstar, 'alphastar': alphastar, 'betastar': betastar, 'gammastar': gammastar}
Bmatrix = calcB(astar,bstar,cstar,alphastar,betastar,gammastar,c, alpha)
UBmatrix = calcUB(h1, k1, l1, h2, k2, l2, omega1, chi1, phi1, omega2, chi2, phi2, Bmatrix)
#storing the B and UB matricies in the Django cache
return HttpResponse([UBmatrix[0][0],', ', UBmatrix[0][1],', ', UBmatrix[0][2],', ', UBmatrix[1][0],', ', UBmatrix[1][1],', ', UBmatrix[1][2],', ', UBmatrix[2][0],', ', UBmatrix[2][1],', ', UBmatrix[2][2]])
#return HttpResponse(simplejson.dumps(UBmatrix)) #not working atm
#return HttpResponse(UBmatrix)
def refineUB(request):
"Calculates the refined UB matrix and returns it to the frontend"
requestObject = simplejson.loads(request.POST.keys()[0])
data = requestObject['data']
observations = []
for i in range(1, len(data)):
observations.append(data[i])
UBmatrix = calcRefineUB(observations, data[0]['wavelength'])
return HttpResponse([UBmatrix[0][0],', ', UBmatrix[0][1],', ', UBmatrix[0][2],', ', UBmatrix[1][0],', ', UBmatrix[1][1],', ', UBmatrix[1][2],', ', UBmatrix[2][0],', ', UBmatrix[2][1],', ', UBmatrix[2][2]])
def getLatticeParameters (request):
requestObject = simplejson.loads(request.POST.keys()[0])
UBmatrix = requestObject['UBmatrix']
UBmatrix = N.array(UBmatrix)
#UBmatrix = N.array(UBmatrix).reshape((3,3)) #converting into 3x3 no longer necessary
paramsDict = calculateLatticeParameters(UBmatrix)
return HttpResponse([paramsDict])
def makeSaveFile (request):
"Saves the current data in a text file named 'savedata.txt', overwriting the previous text file so there is minimal data storage. Then lets user download the file."
requestObject = simplejson.loads(request.POST.keys()[0])
data = requestObject['data']
#today = datetime.datetime.now().date()
#theYear = today.year
#theMonth = today.month
#theDay = today.day
#datafile = 'savedata' +today.month + today.day + today.year + '.txt'
#http://docs.python.org/tutorial/inputoutput.html - section 7.2 has information on opening files;
# open ('filename', 'letter') where letter = 'w' (overwrite), 'r' (read), 'r+' (read and write), 'a' (append, not overwrite)
#dataWriter = csv.writer(open(datafile, 'w'), delimiter= ',', escapechar ='', quoting=csv.QUOTE_NONE)
dataWriter = csv.writer(open('/tmp/angleCalculatorData.txt', 'w'), delimiter= ',', escapechar ='', quoting=csv.QUOTE_NONE)
dataWriter.writerow(['#Data input file for angleCalculator.'])
#dataWriter.writerow(['#File downloaded from angleCalculator: '])
#dataWriter.writerow([theDate])
dataWriter.writerow(['#WARNING: editing this file may result in a loss of data when loaded or a complete failure to load.'])
dataWriter.writerow([' '])
dataWriter.writerow(['#Mode'])
dataWriter.writerow([data[0]['mode']])
dataWriter.writerow([' '])
dataWriter.writerow(['#a b c alpha beta gamma wavelength'])
dataWriter.writerow([data[0]['a'], data[0]['b'], data[0]['c'], data[0]['alpha'], data[0]['beta'], data[0]['gamma'], data[0]['wavelength']])
dataWriter.writerow([' '])
dataWriter.writerow(['#Observations h k l twotheta theta chi phi'])
for i in range(1, data[0]['numrows']+1):
dataWriter.writerow([data[i]['h'], data[i]['k'], data[i]['l'], data[i]['twotheta'], data[i]['theta'], data[i]['chi'], data[i]['phi']])
dataWriter.writerow(['#End observations'])
dataWriter.writerow([' '])
dataWriter.writerow(['#UBmatrix'])
dataWriter.writerow([data[0]['isUBcalculated']])
dataWriter.writerow([data[0]['ub'][0][0], data[0]['ub'][0][1], data[0]['ub'][0][2], data[0]['ub'][1][0], data[0]['ub'][1][1], data[0]['ub'][1][2], data[0]['ub'][2][0], data[0]['ub'][2][1], data[0]['ub'][2][2]])
dataWriter.writerow([' '])
dataWriter.writerow(['#Scattering Plane Vectors h k l'])
dataWriter.writerow([data[0]['h1'], data[0]['k1'], data[0]['l1']])
dataWriter.writerow([data[0]['h2'], data[0]['k2'], data[0]['l2']])
dataWriter.writerow([' '])
dataWriter.writerow(['#Fixed Phi Value'])
dataWriter.writerow([data[0]['phi']])
dataWriter.writerow([' '])
dataWriter.writerow(['#Desired h k l twotheta theta omega chi phi'])
for i in range(data[0]['numrows']+1, len(data)):
dataWriter.writerow([data[i]['h'], data[i]['k'], data[i]['l'], data[i]['twotheta'], data[i]['theta'], data[i]['omega'], data[i]['chi'], data[i]['phi']])
dataWriter.writerow(['#End desired'])
return HttpResponse('saved.')
def uploadInputFile (fid):
response = []
#open(filename, letter) --> letter defaults to 'r' (read only)
dataReader = csv.reader(fid, delimiter=',')
data = []
for row in dataReader:
data.append(', '.join(row)) #making an array of row Strings.
modenum = data.index('#Mode')
latticenum = data.index('#a b c alpha beta gamma wavelength')
observationsnum = data.index('#Observations h k l twotheta theta chi phi')
endobservationsnum = data.index('#End observations')
scatteringnum = data.index('#Scattering Plane Vectors h k l')
phinum = data.index('#Fixed Phi Value')
desirednum = data.index('#Desired h k l twotheta theta omega chi phi')
enddesirednum = data.index('#End desired')
ubnum = data.index('#UBmatrix')
print modenum
if (modenum < 0 or latticenum < 0 or observationsnum < 0 or scatteringnum < 0 or phinum < 0 or desirednum < 0 or ubnum < 0):
#if any of the data titles aren't found, input fails
#TODO make sure it fails here; bellow line counts as success, I think
#return HttpResponse('failed')
raise ValueError('missing line')
else:
#getting the lattice data
latticearr = data[latticenum+1].split(',')
thelattice = []
for x in latticearr:
thelattice.append(float(x))
#getting the scattering plane vectors
thespvectors = []
sparr1 = data[scatteringnum+1].split(',')
for x in sparr1:
thespvectors.append(float(x))
sparr2 = data[scatteringnum+2].split(',')
for x in sparr2:
thespvectors.append(float(x))
#getting the ubmatrix and how it was calculated
isUBcalculated = data[ubnum+1]
ubarr = data[ubnum+2].split(',')
#putting the mode data, lattice data, scattering plane vectors, fixed phi and ubmatrix into response[0]
response0 = {'mode': data[modenum+1], 'a': thelattice[0], 'b': thelattice[1], 'c': thelattice[2], 'alpha': thelattice[3], 'beta': thelattice[4], 'gamma': thelattice[5], 'wavelength': thelattice[6], 'h1': thespvectors[0], 'k1': thespvectors[1],'l1': thespvectors[2], 'h2': thespvectors[3], 'k2': thespvectors[4], 'l2': thespvectors[5], 'phi': data[phinum+1], 'isUBcalculated': isUBcalculated, 'UBmatrix': ubarr}
response.append(response0)
#getting observation data
for i in range(observationsnum+1, endobservationsnum):
obsarr = data[i].split(',')
theobservations = [] #going to be re-filled for each new row of data
for x in obsarr:
theobservations.append(float(x))
obsresponse = {'h': theobservations[0], 'k': theobservations[1], 'l': theobservations[2], 'twotheta': theobservations[3], 'theta': theobservations[4], 'chi': theobservations[5], 'phi': theobservations[6]}
response.append(obsresponse)
#getting the ideal data
for i in range(desirednum+1, enddesirednum):
idealarr = data[i].split(',')
theidealdata = [] #going to be re-filled for each new row of data
for x in idealarr:
theidealdata.append(x)
desiredresponses = {'h': float(theidealdata[0]), 'k': float(theidealdata[1]), 'l': float(theidealdata[2]), 'twotheta': theidealdata[3], 'theta': theidealdata[4], 'omega': theidealdata[5], 'chi': theidealdata[6], 'phi': theidealdata[7]}
response.append(desiredresponses)
return response