-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpboc.py
632 lines (514 loc) · 22.1 KB
/
pboc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
import os
import numpy as np
import pandas as pd
import datetime
from utils import *
import requests
from bs4 import BeautifulSoup
import re
from io import StringIO, BytesIO
##### 人民银行 #####
#
def plot_financing_data():
path = os.path.join(pboc_dir, '社会融资规模'+'.csv')
df = pd.read_csv(path)
t = pd.DatetimeIndex(pd.to_datetime(df['time'], format='%Y-%m'))
name_list = ['社会融资规模增量',
'社会融资规模增量:企业债券',
'社会融资规模增量:政府债券',
]
for name in name_list:
data = np.array(df[name], dtype=float)
plot_seasonality(t, data, start_year=2015, title=name)
path = os.path.join(pboc_dir, '金融机构人民币信贷收支表'+'.csv')
df = pd.read_csv(path)
t = pd.DatetimeIndex(pd.to_datetime(df['time'], format='%Y-%m'))
# 贷款
name_list = ['各项贷款:境内:住户',
'各项贷款:境内:住户:中长期',
'各项贷款:境内:住户:中长期:消费',
'各项贷款:境内:住户:中长期:经营',
'各项贷款:境内:住户:短期',
'各项贷款:境内:住户:短期:消费',
'各项贷款:境内:住户:短期:经营',
'各项贷款:境内:企事业单位:中长期',
'各项贷款:境内:企事业单位:短期',
]
for name in name_list:
data = np.array(df[name], dtype=float)
plot_seasonality(t[1:], data[1:]-data[:-1], start_year=2015, title=name)
# 存款
name_list = ['各项存款:境内:住户:活期',
'各项存款:境内:住户:定期及其他',
'各项存款:境内:非金融企业:活期',
'各项存款:境内:非金融企业:定期及其他',
'各项存款:境内:非银行业金融机构',
'各项存款:境内:政府',
'各项存款:境内:财政性',
'各项存款:境内:机关团体',
]
for name in name_list:
data = np.array(df[name], dtype=float)
plot_seasonality(t[1:], data[1:]-data[:-1], start_year=2015, title=name)
# #
# def test1():
# path = os.path.join(data_dir, '社会融资规模'+'.csv')
# df = pd.read_csv(path)
# t = pd.DatetimeIndex(pd.to_datetime(df['time'], format='%Y-%m'))
# sf_total = np.array(df['社会融资增量:当月值'], dtype=float)
# resident1 = np.array(df['金融机构:新增人民币贷款:居民户:中长期:当月值'], dtype=float)
# resident2 = np.array(df['金融机构:新增人民币贷款:居民户:短期:当月值'], dtype=float)
# z1 = np.array(df['社会融资增量:企业债券融资:当月值'], dtype=float)
# z2 = np.array(df['社会融资增量:政府债券:当月值'], dtype=float)
# z3 = np.array(df['金融机构:新增人民币贷款:非金融性公司及其他部门:中长期:当月值'], dtype=float)
# z4 = np.array(df['金融机构:新增人民币贷款:非金融性公司及其他部门:短期:当月值'], dtype=float)
# plot_seasonality(t, sf_total, start_year=2015, title='社会融资增量:当月值 (亿元)')
# plot_seasonality(t, resident1, start_year=2015, title='新增人民币贷款:居民户:中长期:当月值 (亿元)')
# plot_seasonality(t, resident2, start_year=2015, title='新增人民币贷款:居民户:短期:当月值 (亿元)')
# plot_seasonality(t, z1, start_year=2015, title='社会融资增量:企业债券融资:当月值')
# plot_seasonality(t, z2, start_year=2015, title='社会融资增量:政府债券:当月值')
# plot_seasonality(t, z3, start_year=2015, title='新增人民币贷款:非金融性公司及其他部门:中长期:当月值')
# plot_seasonality(t, z4, start_year=2015, title='新增人民币贷款:非金融性公司及其他部门:短期:当月值')
def update_pboc_url():
se = requests.session()
PBOC_HEADERS = {"User-Agent": "Mozilla/4.0 (compatible; MSIE 5.5; Windows NT)",
'Host': 'www.pbc.gov.cn'}
# 调查统计司
PBOC_ROOT_URL = 'http://www.pbc.gov.cn/diaochatongjisi/116219/index.html'
path = os.path.join(pboc_dir, 'pboc_url'+'.csv')
if os.path.exists(path):
old_df = pd.read_csv(path)
old_t = pd.DatetimeIndex(pd.to_datetime(old_df['time'], format='%Y'))
old_df.drop_duplicates(subset=['time'], keep='last', inplace=True) # last
start_year = old_t[-1].year
else:
old_df = pd.DataFrame()
start_year = 2015
r = se.post(PBOC_ROOT_URL, headers=PBOC_HEADERS)
s = r.content.decode('utf-8')
soup = BeautifulSoup(s, 'html.parser')
z = soup.find_all(name='a', string=re.compile('年统计数据'))
for a1 in z:
col = ['time']
# 年统计数据的 url
year = a1.get_text()[:4]
data = [int(year)]
year_url = 'http://www.pbc.gov.cn' + a1['href']
if (int(year) >= start_year):
print('==============', 'YEAR', year, '==============')
r = se.post(year_url, headers=PBOC_HEADERS)
s = r.content.decode('utf-8')
soup = BeautifulSoup(s, 'html.parser')
name_list = ['社会融资规模', '货币统计概览', '金融机构信贷收支统计']
for name in name_list:
# 各类统计数据的 url
a2 = soup.find_all(name='a', string=re.compile(name))[0]
name_url = 'http://www.pbc.gov.cn' + a2['href']
r = se.post(name_url, headers=PBOC_HEADERS)
s = r.content.decode('utf-8')
soup2 = BeautifulSoup(s, 'html.parser')
tmp_col = []
tmp_data = []
if name == '社会融资规模':
div = soup2.find_all(name='div', class_ = "titp20")
a3 = soup2.find_all(name='a', string=re.compile('htm'))
a4 = soup2.find_all(name='a', string=re.compile('Q'))
# 社会融资规模增量
tmp_col.append(div[0].get_text().split('统计表')[0].strip())
tmp_data.append('http://www.pbc.gov.cn' + a3[0]['href'])
# 社会融资规模存量
tmp_col.append(div[1].get_text().split('统计表')[0].strip())
tmp_data.append('http://www.pbc.gov.cn' + a3[1]['href'])
# 地区社会融资规模增量
s = div[2].get_text().split('统计表')[0].strip()
for k in range(4):
tmp_col.append(s+'Q'+str(k+1))
try:
region_url = 'http://www.pbc.gov.cn' + a4[k]['href']
r = se.post(region_url, headers=PBOC_HEADERS)
rs = r.content.decode('utf-8')
soup3 = BeautifulSoup(rs, 'html.parser')
ra = soup3.find_all(name='a', string=re.compile('地区社会融资规模'))[0]
tmp_data.append('http://www.pbc.gov.cn' + ra['href'])
except Exception as e:
tmp_data.append('')
if (name == '货币统计概览') or (name == '金融机构信贷收支统计'):
div = soup2.find_all(name='div', class_ = "titp20")
a3 = soup2.find_all(name='a', string=re.compile('htm'))
for k in range(len(a3)):
tmp_col.append(div[k].get_text().strip().split(' ')[0].strip())
tmp_data.append('http://www.pbc.gov.cn' + a3[k]['href'])
print('----------', name, '----------')
print(tmp_col)
print(tmp_data)
col += tmp_col
data += tmp_data
df = pd.DataFrame(columns=col, data=[data])
old_df = pd.concat([old_df, df], axis=0)
old_df.drop_duplicates(subset=['time'], keep='last', inplace=True) # last
old_df['time'] = pd.to_datetime(old_df['time'], format='%Y')
old_df.sort_values(by='time', axis=0, ascending=True, inplace=True)
old_df['time'] = old_df['time'].apply(lambda x:datetime.datetime.strftime(x,'%Y'))
old_df.to_csv(path, encoding='utf-8', index=False)
# 社会融资规模 增量
def get_afre_data1(se, url):
if se is None:
se = requests.session()
PBOC_HEADERS = {"User-Agent": "Mozilla/4.0 (compatible; MSIE 5.5; Windows NT)",
'Host': 'www.pbc.gov.cn'}
# url = 'http://www.pbc.gov.cn/diaochatongjisi/resource/cms/2018/04/2018041118034695174.htm'
r = se.post(url, headers=PBOC_HEADERS)
try:
s = r.content.decode('gbk')
temp_df = pd.read_html(StringIO(s))[0]
except:
s = r.content
temp_df = pd.read_html(s)[0]
temp_df.dropna(how='all', subset=[2], inplace=True)
temp_df.reset_index(inplace=True, drop=True)
for i in range(len(temp_df)):
s = temp_df.loc[i,1]
if (type(s) == str) and (s == '社会融资规模增量'):
col = temp_df.loc[i,:].values.tolist()
col[0] = 'time'
n = 0
for k in range(len(col)):
if type(col[k]) == str:
n += 1
if col[k] == '地方政府专项债券':
col[k] = '政府债券'
if type(col[k]) == str and col[k] != 'time' and col[k] != '社会融资规模增量':
col[k] = '社会融资规模增量:' + col[k]
col = col[:n]
start_idx = i + 2
s = temp_df.loc[i,0]
if (type(s) == str) and ('注' in s):
end_idx = i - 1
df = temp_df.loc[start_idx:end_idx, 0:n-1]
df.columns = col
df['time'] = pd.to_datetime(df['time'], format='%Y.%m')
df['time'] = df['time'].apply(lambda x:datetime.datetime.strftime(x,'%Y-%m'))
# print(df)
return df
# 社会融资规模 存量
def get_afre_data2(se, url):
if se is None:
se = requests.session()
se = requests.session()
PBOC_HEADERS = {"User-Agent": "Mozilla/4.0 (compatible; MSIE 5.5; Windows NT)",
'Host': 'www.pbc.gov.cn'}
r = se.post(url, headers=PBOC_HEADERS)
try:
s = r.content.decode('gbk')
temp_df = pd.read_html(StringIO(s))[0]
except:
s = r.content
temp_df = pd.read_html(s)[0]
temp_df = temp_df.T
temp_df.drop([0,1,2,3,5,6,7], axis=1, inplace=True)
col = temp_df.loc[0].values.tolist()
col[0] = 'time'
n = 0
z = [4]
for k in range(len(col)):
if type(col[k]) != str:
break
n += 1
col[k] = col[k].split(' ')[0]
col[k] = col[k].replace('其中:', '')
if col[k] != 'time' and col[k] != '社会融资规模存量':
col[k] = '社会融资规模存量:' + col[k]
z.append(8+k)
col = col[:n]
temp_df = temp_df.loc[:, z[:len(z)-1]]
temp_df.dropna(how='all', subset=[8], inplace=True)
temp_df = temp_df.loc[1:, ]
temp_df.columns = col
temp_df.reset_index(inplace=True, drop=True)
new_col = col.copy()
for k in range(1, len(col)):
new_col.append(col[k]+' 同比')
df = pd.DataFrame(columns=new_col)
for k in range(0, len(temp_df), 2):
data = temp_df.loc[k, :].values.tolist()
data += temp_df.loc[k+1, col[1:]].values.tolist()
df.loc[k//2] = data
df['time'] = pd.to_datetime(df['time'], format='%Y.%m')
df['time'] = df['time'].apply(lambda x:datetime.datetime.strftime(x,'%Y-%m'))
for c in new_col:
if (c != 'time') and not('同比' in c):
z = np.array(df[c], dtype=float)
df[c] = z*10000
# print(df)
return df
# Aggregate Financing to the Real Economy
# 社会融资规模
def update_afre_data():
se = requests.session()
current_year = datetime.datetime.now().year
path = os.path.join(pboc_dir, '社会融资规模'+'.csv')
if os.path.exists(path):
old_df = pd.read_csv(path)
old_t = pd.DatetimeIndex(pd.to_datetime(old_df['time'], format='%Y-%m'))
month = old_t[-1].month
start_year = old_t[-1].year
if month == 12:
start_year += 1
else:
old_df = pd.DataFrame()
start_year = 2015
path = os.path.join(pboc_dir, 'pboc_url'+'.csv')
url_df = pd.read_csv(path)
url_t = np.array(url_df['time'], dtype=str)
df = pd.DataFrame()
while (start_year <= current_year):
print('社会融资规模', start_year)
idx = np.where(url_t == str(start_year))[0][0]
url1 = url_df.loc[idx, '社会融资规模增量']
url2 = url_df.loc[idx, '社会融资规模存量']
print(url1)
df1 = get_afre_data1(se, url1)
if start_year > 2015:
df2 = get_afre_data2(se, url2)
df1 = pd.merge(df1, df2, on='time', how='outer')
df = pd.concat([df, df1], axis=0)
start_year += 1
path = os.path.join(pboc_dir, '社会融资规模'+'.csv')
old_df = pd.concat([old_df, df], axis=0)
old_df.drop_duplicates(subset=['time'], keep='last', inplace=True) # last
old_df['time'] = pd.to_datetime(old_df['time'], format='%Y-%m')
old_df.sort_values(by='time', axis=0, ascending=True, inplace=True)
old_df['time'] = old_df['time'].apply(lambda x:datetime.datetime.strftime(x,'%Y-%m'))
old_df.to_csv(path, encoding='utf-8', index=False)
# 金融机构人民币信贷收支表
def get_summary_of_sources_and_uses(se=None, url=None, name=None):
if se is None:
se = requests.session()
PBOC_HEADERS = {"User-Agent": "Mozilla/4.0 (compatible; MSIE 5.5; Windows NT)",
'Host': 'www.pbc.gov.cn'}
r = se.post(url, headers=PBOC_HEADERS)
try:
s = r.content.decode('gbk')
df = pd.read_html(StringIO(s))[0]
except:
s = r.content
df = pd.read_html(s)[0]
start_idx = 0
end_idx = 0
remove_idx = 0
time_idx = 0
for i in range(len(df)):
s = df.loc[i, 0]
if type(s) == str:
s = s.strip()
if ('项目' in s) and ('Item' in s):
time_idx = i
if '来源方项目' in s:
start_idx = i+1
if '运用方项目' in s:
remove_idx = i
if '注:' in s:
end_idx = i-2
reserve = [time_idx]
for i in range(start_idx, end_idx+1):
reserve.append(i)
df = df.loc[reserve,]
df.drop(remove_idx, axis=0, inplace=True)
df.dropna(how='all', axis=1, inplace=True)
df = df.T
col = df.loc[0,].values.tolist()
prefix = []
for i in range(len(col)):
ss = re.findall('[\u4e00-\u9fa5]', col[i])
s = ''
for c in ss:
if c in ['一', '二', '三' , '四', '五' , '六', '七']:
continue
s += c
if '各项存款' in s:
prefix.append('各项存款:')
if '境内存款' in s:
prefix.append('境内:')
if '住户存款' in s:
prefix.append('住户:')
if '非金融企业存款' in s:
del prefix[-1]
prefix.append('非金融企业:')
if '政府存款' in s:
del prefix[-1]
if ('机关团体存款' in s) or ('财政性存款' in s):
if '非金融企业:' in prefix:
del prefix[-1]
if ('境外存款' in s):
del prefix[-1]
if ('金融债券' in s):
del prefix[-1]
################################
if '各项贷款' in s:
prefix.append('各项贷款:')
if '境内贷款' in s:
prefix.append('境内:')
if '住户贷款' in s:
prefix.append('住户:')
if ('短期贷款' in s) and ('住户:' in prefix):
prefix.append('短期:')
if ('中长期贷款' in s) and ('住户:' in prefix):
del prefix[-1]
prefix.append('中长期:')
if ('企事业单位贷款' in s) or ('非金融企业及机关团体贷款'in s):
s = '企事业单位贷款'
del prefix[-1]
del prefix[-1]
prefix.append('企事业单位:')
if '非银行业金融机构贷款' in s:
del prefix[-1]
if '境外贷款' in s:
del prefix[-1]
if '债券投资' in s:
del prefix[-1]
if '外汇买卖' in s:
s = '中央银行外汇占款'
if len(prefix) > 0 and not((s == '各项存款') or (s == '各项贷款')):
s = s.replace('存款', '')
s = s.replace('贷款', '')
p = ''
for c in prefix:
if not(s in c):
p = p + c
s = p + s
col[i] = s
col[0] = 'time'
df = df.loc[1:, ]
df.columns = col
df.reset_index(inplace=True, drop=True)
df.dropna(how='any', axis=0, inplace=True)
df['time'] = pd.to_datetime(df['time'], format='%Y.%m')
df['time'] = df['time'].apply(lambda x:datetime.datetime.strftime(x,'%Y-%m'))
return df
def update_summary_of_sources_and_uses(name):
se = requests.session()
current_year = datetime.datetime.now().year
path = os.path.join(pboc_dir, name+'.csv')
if os.path.exists(path):
old_df = pd.read_csv(path)
old_t = pd.DatetimeIndex(pd.to_datetime(old_df['time'], format='%Y-%m'))
month = old_t[-1].month
start_year = old_t[-1].year
if month == 12:
start_year += 1
else:
old_df = pd.DataFrame()
start_year = 2015
path = os.path.join(pboc_dir, 'pboc_url'+'.csv')
url_df = pd.read_csv(path)
url_t = np.array(url_df['time'], dtype=str)
df = pd.DataFrame()
while (start_year <= current_year):
print(name, start_year)
idx = np.where(url_t == str(start_year))[0][0]
url = url_df.loc[idx, name]
df1 = get_summary_of_sources_and_uses(se, url, name)
df = pd.concat([df, df1], axis=0)
start_year += 1
path = os.path.join(pboc_dir, name+'.csv')
old_df = pd.concat([old_df, df], axis=0)
old_df.drop_duplicates(subset=['time'], keep='last', inplace=True) # last
old_df['time'] = pd.to_datetime(old_df['time'], format='%Y-%m')
old_df.sort_values(by='time', axis=0, ascending=True, inplace=True)
old_df['time'] = old_df['time'].apply(lambda x:datetime.datetime.strftime(x,'%Y-%m'))
old_df.to_csv(path, encoding='utf-8', index=False)
# 存款性公司概览
def update_depository_corporationss_survey():
se = requests.session()
PBOC_HEADERS = {"User-Agent": "Mozilla/4.0 (compatible; MSIE 5.5; Windows NT)",
'Host': 'www.pbc.gov.cn'}
current_year = datetime.datetime.now().year
name = '存款性公司概览'
path = os.path.join(pboc_dir, name+'.csv')
if os.path.exists(path):
old_df = pd.read_csv(path)
old_t = pd.DatetimeIndex(pd.to_datetime(old_df['time'], format='%Y-%m'))
month = old_t[-1].month
start_year = old_t[-1].year
if month == 12:
start_year += 1
else:
old_df = pd.DataFrame()
start_year = 2015
path = os.path.join(pboc_dir, 'pboc_url'+'.csv')
url_df = pd.read_csv(path)
url_t = np.array(url_df['time'], dtype=str)
df = pd.DataFrame()
while (start_year <= current_year):
print(name, start_year)
idx = np.where(url_t == str(start_year))[0][0]
url = url_df.loc[idx, name]
r = se.post(url, headers=PBOC_HEADERS)
try:
s = r.content.decode('gbk')
temp_df = pd.read_html(StringIO(s))[0]
except:
s = r.content
temp_df = pd.read_html(s)[0]
i = 0
while (1):
s = temp_df.loc[i, 0]
if type(s) == str and '国外净资产' in s:
break
i += 1
k = 0
while (1):
s = temp_df.loc[k, 0]
if type(s) == str and '其他(净)' in s:
break
k += 1
reserve = [i-2]
for i in range(i, k+1):
reserve.append(i)
temp_df = temp_df.loc[reserve,]
temp_df.dropna(how='any', axis=1, inplace=True)
temp_df = temp_df.T
temp_df.dropna(how='any', axis=1, inplace=True)
col = temp_df.loc[0].values.tolist()
for i in range(len(col)):
if (i == 0):
col[i] = 'time'
continue
ss = col[i]
c = re.findall('[A-Z]', col[i])
ss = ss.replace(' ', '')
w = ss.find(c[0])
ss = ss[:w]
if '个人存款' in ss:
ss = '个人存款'
col[i] = ss
print(col)
# exit()
# exit()
temp_df.columns = col
temp_df.drop(0, inplace=True)
temp_df['time'] = temp_df['time'].apply(lambda x:x.replace('.', '-'))
df = pd.concat([df, temp_df], axis=0)
start_year += 1
path = os.path.join(pboc_dir, name+'.csv')
old_df = pd.concat([old_df, df], axis=0)
old_df.drop_duplicates(subset=['time'], keep='last', inplace=True) # last
old_df['time'] = pd.to_datetime(old_df['time'], format='%Y-%m')
old_df.sort_values(by='time', axis=0, ascending=True, inplace=True)
old_df['time'] = old_df['time'].apply(lambda x:datetime.datetime.strftime(x,'%Y-%m'))
old_df.to_csv(path, encoding='utf-8', index=False)
if __name__=="__main__":
# update_pboc_url()
update_depository_corporationss_survey()
# update_pboc_url()
# # 社会融资规模
# update_afre_data()
# # 信贷收支表
# update_summary_of_sources_and_uses('金融机构本外币信贷收支表')
# update_summary_of_sources_and_uses('金融机构人民币信贷收支表')
# update_summary_of_sources_and_uses('金融机构外汇信贷收支表')
# update_summary_of_sources_and_uses('存款类金融机构本外币信贷收支表')
# update_summary_of_sources_and_uses('存款类金融机构人民币信贷收支表')
# update_summary_of_sources_and_uses('存款类金融机构外汇信贷收支表')
# plot_financing_data()
pass