-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoil.py
44 lines (31 loc) · 1.23 KB
/
oil.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import os
import pandas as pd
import datetime
import numpy as np
from utils import *
from cftc import *
from msci import *
from vix import *
def plot_oil():
path = os.path.join(data_dir, 'CFD', 'WTI_CFD'+'.csv')
df1 = pd.read_csv(path)
t1 = pd.DatetimeIndex(pd.to_datetime(df1['time'], format='%Y-%m-%d'))
wti = np.array(df1['close'], dtype=float)
cftc_plot_disaggregated(t1, wti, 'WTI CFD', code='067651', inst_name='NYMEX:WTI原油PHYSICAL')
# cftc_plot_disaggregated(t1, wti, 'WTI CFD', code='06765A', inst_name='NYMEX:WTI原油FINANCIAL')
plot_commodity_vix('sc')
def plot_gasoline():
path = os.path.join(data_dir, 'CFD', 'GASOLINE_CFD'+'.csv')
df1 = pd.read_csv(path)
t1 = pd.DatetimeIndex(pd.to_datetime(df1['time'], format='%Y-%m-%d'))
wti = np.array(df1['close'], dtype=float)
# path = os.path.join(data_dir, 'DIESEL OIL CFD'+'.csv')
# df2 = pd.read_csv(path)
# t2 = pd.DatetimeIndex(pd.to_datetime(df2['time'], format='%Y-%m-%d'))
# diesel = np.array(df2['close'], dtype=float)
cftc_plot_disaggregated(t1, wti, 'GASOLINE CFD', code='111659', inst_name='NYMEX:GASOLINE RBOB')
if __name__=="__main__":
plot_oil()
plot_saudi_vs_oil()
plot_gasoline()
pass