-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfed.py
489 lines (408 loc) · 18.8 KB
/
fed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
import os
import re
import time
import numpy as np
import pandas as pd
import bs4
import datetime
import requests
from utils import *
from io import StringIO, BytesIO
def update_fomc_calendar():
se = requests.session()
url = 'https://www.federalreserve.gov/monetarypolicy/fomccalendars.htm'
FED_HEADERS = {
"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8",
"Accept-Encoding": "gzip, deflate, br",
"Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8",
"Host": "www.federalreserve.gov",
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/101.0.4951.67 Safari/537.36",
}
while (1):
try:
r = se.get(url, verify=False, headers=FED_HEADERS, timeout=10)
break
except Exception as e:
print(e)
time.sleep(5)
soup = bs4.BeautifulSoup(r.text, 'html.parser')
divs = soup.find_all(name='div', class_="panel panel-default")
t = []
for div in divs:
d = div.find(name='div', class_='panel-heading')
year = d.get_text()[:4]
months = div.find_all(name='div', class_=re.compile('fomc-meeting__month'))
days = div.find_all(name='div', class_=re.compile('fomc-meeting__date'))
if not('cancelled' in days):
L = len(months)
for i in range(L):
month = months[i].get_text()
if '/' in month:
month = month.split('/')[1].upper()
month = month_dict[month]
else:
month = month[:3].upper()
month = month_dict[month]
day = days[i].get_text()
day = day.replace('*', '').split(' (')[0]
if '-' in day:
day = day.split('-')[1]
else:
day = day.split(' ')[0]
if len(day) == 1:
day = '0' + day
t.append(year + '-' + month + '-' + day)
df = pd.DataFrame(columns=['time'], data=t)
path = os.path.join(interest_rate_dir, 'fomc_calendar'+'.csv')
if os.path.exists(path):
old_df = pd.read_csv(path)
old_df = pd.concat([old_df, df], axis=0)
old_df.drop_duplicates(subset=['time'], keep='last', inplace=True) # last
old_df['time'] = pd.to_datetime(old_df['time'], format='%Y-%m-%d')
old_df.sort_values(by='time', axis=0, ascending=True, inplace=True)
old_df['time'] = old_df['time'].apply(lambda x:datetime.datetime.strftime(x,'%Y-%m-%d'))
old_df.to_csv(path, encoding='utf-8', index=False)
else:
df['time'] = df['time'].apply(lambda x:pd.to_datetime(x, format='%Y-%m-%d'))
df.sort_values(by = 'time', inplace=True)
df['time'] = df['time'].apply(lambda x:datetime.datetime.strftime(x,'%Y-%m-%d'))
df.to_csv(path, encoding='utf-8', index=False)
def get_zq_df_line_data(temp_zq_df):
contracts = []
settles = []
i = 0
while (1):
i += 1
cn = 'c'+str(i)
try:
settle = temp_zq_df[cn]['settle']
if np.isnan(settle):
break
contracts.append(temp_zq_df[cn]['inst_id'])
settles.append(settle)
except:
break
return contracts, settles
def get_pre_month_last_day_effr(effr_t, effr, year, month):
pre_month_lasy_day_dt = get_pre_month_last_day(year, month)
while (1):
idx = np.where(effr_t == pre_month_lasy_day_dt)[0]
if len(idx) > 0:
i = idx[0]
pre_month_lasy_day_effr = effr[i]
break
pre_month_lasy_day_dt -= pd.Timedelta(days=1)
return pre_month_lasy_day_dt, pre_month_lasy_day_effr
def fomc_meeting_day_this_month_since(dt, fomc_t):
idx = np.where(fomc_t >= dt)[0]
if len(idx) == 0:
return None
else:
idx = idx[0]
if fomc_t[idx].month == dt.month:
return fomc_t[idx]
else:
return None
def calculate_effr_expectation():
path = os.path.join(future_price_dir, 'cme', 'ZQ'+'.csv')
zq_df = pd.read_csv(path, header=[0,1])
zq_t = pd.DatetimeIndex(pd.to_datetime(zq_df['time']['time'], format='%Y-%m-%d'))
path = os.path.join(interest_rate_dir, 'fomc_calendar'+'.csv')
fomc_df = pd.read_csv(path)
fomc_t = pd.DatetimeIndex(pd.to_datetime(fomc_df['time'], format='%Y-%m-%d'))
effr_change_t = fomc_t + pd.Timedelta(days=1)
path = os.path.join(interest_rate_dir, 'federal_fund_rate'+'.csv')
effr_df = pd.read_csv(path)
effr_t = pd.DatetimeIndex(pd.to_datetime(effr_df['time'], format='%Y-%m-%d'))
# effr1 = np.array(effr_df['Effective Federal Funds Rate'], dtype=float)
effr = np.array(effr_df['Federal Funds Effective Rate'], dtype=float)
w = np.where(np.isnan(effr) == False)[0]
effr[w] = effr[w]
effr_t = effr_t[w]
# w = np.where(np.isnan(effr) == False)[0]
# effr_t = effr_t[w]
# effr = effr[w]
# ########## expiry time dict ##########
# expiry_time_dict = {}
# for i in range(len(expiry_time)):
# expiry_time_dict['ZQ'+ym[i]] = pd.to_datetime(expiry_time[i], format='%Y-%m-%d')
# temp_zq_df = zq_df.loc[len(zq_t)-1,:]
# contracts, _ = get_zq_df_line_data(temp_zq_df)
# for contract in contracts:
# if not(contract in expiry_time_dict):
# expiry_time_dict[contract] = get_last_friday(int('20'+contract[2:4]), int(contract[4:]))
# # print(expiry_time_dict)
###########################################
path = os.path.join(interest_rate_dir, 'effr_expectation'+'.csv')
if not os.path.exists(path):
start_time = '2023-07-01'
start_time_dt = pd.to_datetime(start_time, format='%Y-%m-%d')
else:
df = pd.read_csv(path, header=[0,1])
t = pd.DatetimeIndex(pd.to_datetime(df['time']['time'], format='%Y-%m-%d'))
start_time_dt = t[-1] + pd.Timedelta(days=1)
zq_i = np.where(zq_t >= start_time_dt)[0]
if len(zq_i) == 0:
return
zq_i = zq_i[0]
######
zq_i -= 5
######
########################################
while (zq_i < len(zq_t)):
dt = zq_t[zq_i]
t = dt.strftime('%Y-%m-%d')
col1 = ['time']
col2 = ['time']
data = [t]
n = 0
# time
day = dt.day
month = dt.month
year = dt.year
print(t)
preday_month = zq_t[zq_i-1].month
# check zq time and effr time
dt_minus1 = dt - pd.Timedelta(days=1)
if not(dt_minus1 in effr_t):
zq_i += 1
continue
# settle
temp_zq_df = zq_df.loc[zq_i,:]
contracts, settles = get_zq_df_line_data(temp_zq_df)
zq_i += 1
########## current month ##########
_, pre_month_lasy_day_effr = get_pre_month_last_day_effr(effr_t, effr, year, month)
# fomc meeting day
fomc_meeting_dt = fomc_meeting_day_this_month_since(dt, fomc_t)
month_end_day_dt = get_month_last_day(year, month)
month_end_day = month_end_day_dt.strftime('%Y-%m-%d')
month_days = calendar.monthrange(year, month)[-1]
k = 0
if month != preday_month: # month first day
if dt in effr_change_t:
continue
if (fomc_meeting_dt is None) or (fomc_meeting_dt == month_end_day_dt):
begin_day = t
rate = 100 - settles[k]
n += 1
col1 += [str(n), str(n)]
col2 += ['time', 'rate']
data += [begin_day, round(rate,4)]
n += 1
col1 += [str(n), str(n)]
col2 += ['time', 'rate']
data += [month_end_day, round(rate,4)]
pre_month_lasy_day_effr = rate
else:
# has fomc meeting not at lastday
meeting_day = fomc_meeting_dt.day
if day > 1:
idx = np.where(np.logical_and(
(datetime.datetime(year=year, month=month, day=1) <= effr_t),
(effr_t <= datetime.datetime(year=year, month=month, day=day-1))))[0]
before_avg_rate = np.average(effr[idx])
else:
before_avg_rate = pre_month_lasy_day_effr
begin_day = datetime.datetime(year=year, month=month, day=day).strftime('%Y-%m-%d')
n += 1
col1 += [str(n), str(n)]
col2 += ['time', 'rate']
data += [begin_day, round(before_avg_rate,4)]
if (datetime.datetime(year=year, month=month, day=day) < fomc_meeting_dt):
end_day = fomc_meeting_dt.strftime('%Y-%m-%d')
n += 1
col1 += [str(n), str(n)]
col2 += ['time', 'rate']
data += [end_day, round(before_avg_rate,4)]
# after fomc
avg_rate = 100 - settles[k]
after_avg_rate = (avg_rate*month_days - before_avg_rate*meeting_day) / (month_days - meeting_day)
begin_day = datetime.datetime(year=year, month=month, day=meeting_day+1).strftime('%Y-%m-%d')
n += 1
col1 += [str(n), str(n)]
col2 += ['time', 'rate']
data += [begin_day, round(after_avg_rate,4)]
end_day = datetime.datetime(year=year, month=month, day=month_days).strftime('%Y-%m-%d')
n += 1
col1 += [str(n), str(n)]
col2 += ['time', 'rate']
data += [end_day, round(after_avg_rate,4)]
pre_month_lasy_day_effr = after_avg_rate
########## later months ##########
for k in range(1, len(contracts)):
contract = contracts[k]
year = int('20'+contract[2:4])
month = int(contract[4:])
day = 1
dt = datetime.datetime(year=year, month=month, day=day)
t = dt.strftime('%Y-%m-%d')
fomc_meeting_dt = fomc_meeting_day_this_month_since(dt, fomc_t)
month_end_day_dt = get_month_last_day(year, month)
month_end_day = month_end_day_dt.strftime('%Y-%m-%d')
month_days = calendar.monthrange(year, month)[-1]
if (fomc_meeting_dt is None) or (fomc_meeting_dt == month_end_day_dt):
begin_day = t
rate = 100 - settles[k]
n += 1
col1 += [str(n), str(n)]
col2 += ['time', 'rate']
data += [begin_day, round(rate,4)]
n += 1
col1 += [str(n), str(n)]
col2 += ['time', 'rate']
data += [month_end_day, round(rate,4)]
pre_month_lasy_day_effr = rate
else:
# has fomc meeting not at lastday
meeting_day = fomc_meeting_dt.day
# before fomc
before_avg_rate = pre_month_lasy_day_effr
begin_day = datetime.datetime(year=year, month=month, day=1).strftime('%Y-%m-%d')
n += 1
col1 += [str(n), str(n)]
col2 += ['time', 'rate']
data += [begin_day, round(before_avg_rate,4)]
end_day = fomc_meeting_dt.strftime('%Y-%m-%d')
n += 1
col1 += [str(n), str(n)]
col2 += ['time', 'rate']
data += [end_day, round(before_avg_rate,4)]
# after fomc
avg_rate = 100 - settles[k]
after_avg_rate = (avg_rate*month_days - before_avg_rate*meeting_day) / (month_days - meeting_day)
# print(year, month, meeting_day)
begin_day = datetime.datetime(year=year, month=month, day=meeting_day+1).strftime('%Y-%m-%d')
n += 1
col1 += [str(n), str(n)]
col2 += ['time', 'rate']
data += [begin_day, round(after_avg_rate,4)]
end_day = datetime.datetime(year=year, month=month, day=month_days).strftime('%Y-%m-%d')
n += 1
col1 += [str(n), str(n)]
col2 += ['time', 'rate']
data += [end_day, round(after_avg_rate,4)]
pre_month_lasy_day_effr = after_avg_rate
df = pd.DataFrame(columns=[col1,col2], data=[data])
path = os.path.join(interest_rate_dir, 'effr_expectation'+'.csv')
if os.path.exists(path):
old_df = pd.read_csv(path, header=[0,1])
old_df = pd.concat([old_df, df], axis=0)
old_df.drop_duplicates(subset=[('time','time')], keep='last', inplace=True) # last
old_df.loc[:, pd.IndexSlice['time','time']] = old_df.loc[:, pd.IndexSlice['time','time']].apply(lambda x:pd.to_datetime(x, format='%Y-%m-%d'))
old_df.sort_values(by = ('time','time'), inplace=True)
old_df.loc[:, pd.IndexSlice['time','time']] = old_df.loc[:, pd.IndexSlice['time','time']].apply(lambda x:datetime.datetime.strftime(x,'%Y-%m-%d'))
old_df.to_csv(path, encoding='utf-8', index=False)
else:
df.to_csv(path, encoding='utf-8', index=False)
def plot_effr_expectation():
path = os.path.join(interest_rate_dir, 'effr_expectation'+'.csv')
df = pd.read_csv(path, header=[0,1])
t = pd.DatetimeIndex(pd.to_datetime(df['time']['time'], format='%Y-%m-%d'))
L = len(t)
# z = [0, 1, 2, 3, 4, 5, 10, 15, 20]
z = [0, 1, 3, 5, 10]
datas = [[[],[],'']]
for i in z:
temp_df = df.loc[L-1-i, :]
k = 0
temp_t = []
temp_data = []
while (1):
k += 1
try:
if not np.isnan(temp_df[str(k)]['rate']):
temp_t.append(pd.to_datetime(temp_df[str(k)]['time'], format='%Y-%m-%d'))
temp_data.append(temp_df[str(k)]['rate'])
else:
break
except:
break
datas[0][0].append([np.array(temp_t), np.array(temp_data), t[L-1-i].strftime('%Y-%m-%d'), ''])
path = os.path.join(interest_rate_dir, 'federal_fund_rate'+'.csv')
df = pd.read_csv(path)
t = pd.DatetimeIndex(pd.to_datetime(df['time'], format='%Y-%m-%d'))
effr = np.array(df['Federal Funds Effective Rate'], dtype=float)
datas[0][0].append([t, effr, 'EFFR', 'color=black'])
plot_many_figure(datas, start_time='2017-01-01')
######### fed balance sheet H.4.1 #########
# example url
# H41_URL = 'https://www.federalreserve.gov/datadownload/Output.aspx?rel=H41&series=7951a85bb48c5cc679a40e18f2d718bd&lastobs=&from=10/01/2023&to=11/15/2023&filetype=csv&label=include&layout=seriescolumn'
H41_SERIES = {
'7951a85bb48c5cc679a40e18f2d718bd': 'Factors Affecting Reserve Balances of Depository Institutions',
'7c037361d7d4efc82b17dcd09ff94755': 'Memorandum Items',
'476ff974a596a080dcdf50b68e9e4449': 'Maturity Distribution of Securities, Loans, and Selected Other Assets and Liabilities',
'851de028e02a877bdfbfcfa6402d8c08': 'Supplemental Information on Mortgage-Backed Securities',
'734c5de46015881d6f0213c006ec985d': 'Information on Principal Accounts of Credit Facilities LLCs',
'522d41432ac812f80e55915e4fa50ca7': 'Consolidated Statement of Condition of All Federal Reserve Banks',
'd8c555bc285493540550bf0fc2ed5f02': 'Statement of Condition of Each Federal Reserve Bank',
'c22d8b33b4728f25d2f5b2ad29ce5bbc': 'Collateral Held against Federal Reserve Notes, Federal Reserve Agents Accounts',
}
def update_fed_balance_sheet():
se = requests.session()
H41_URL = 'https://www.federalreserve.gov/datadownload/Output.aspx?rel=H41&series={}&lastobs=&from={}&to={}&filetype=csv&label=include&layout=seriescolumn'
FED_HEADERS = {
"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8",
"Accept-Language": "zh-CN,zh;q=0.8,zh-TW;q=0.7,zh-HK;q=0.5,en-US;q=0.3,en;q=0.2",
"Accept-Encoding": "gzip, deflate, br",
"Host": "www.federalreserve.gov",
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:106.0) Gecko/20100101 Firefox/106.0",
'Cookie': 'Peace & Love',
}
earlist_time = '2002-01-01'
for series_id in H41_SERIES:
name = H41_SERIES[series_id]
path = os.path.join(fed_dir, name+'.csv')
if os.path.exists(path):
df = pd.read_csv(path)
t = pd.DatetimeIndex(pd.to_datetime(df['time'], format='%Y-%m-%d'))
start_time_dt = t[-1] + pd.Timedelta(days=1)
else:
start_time_dt = pd.to_datetime(earlist_time, format='%Y-%m-%d')
now = datetime.datetime.now()
while (start_time_dt <= now):
end_time_dt = start_time_dt + pd.Timedelta(days=365)
url = H41_URL.format(series_id, start_time_dt.strftime('%m/%d/%Y'), end_time_dt.strftime('%m/%d/%Y'))
while (1):
try:
print(name, start_time_dt, end_time_dt)
r = se.get(url, headers=FED_HEADERS, timeout=30)
df = pd.read_csv(StringIO(r.text))
break
except Exception as e:
print(e)
time.sleep(15)
start_time_dt = end_time_dt
if len(df) <= 5:
continue
df.rename(columns={"Series Description":"time"}, inplace=True)
df = df.loc[5:,]
# print(df)
if os.path.exists(path):
old_df = pd.read_csv(path)
old_df = pd.concat([old_df, df], axis=0)
old_df.drop_duplicates(subset=['time'], keep='last', inplace=True)
old_df['time'] = old_df['time'].apply(lambda x:pd.to_datetime(x, format='%Y-%m-%d'))
old_df.sort_values(by = 'time', inplace=True)
old_df['time'] = old_df['time'].apply(lambda x:datetime.datetime.strftime(x,'%Y-%m-%d'))
old_df.to_csv(path, encoding='utf-8', index=False)
else:
df['time'] = df['time'].apply(lambda x:pd.to_datetime(x, format='%Y-%m-%d'))
df.sort_values(by = 'time', inplace=True)
df['time'] = df['time'].apply(lambda x:datetime.datetime.strftime(x,'%Y-%m-%d'))
df.to_csv(path, encoding='utf-8', index=False)
def update_onrrp_data():
code = [
['RRPONTSYD', 'Overnight Reverse Repurchase Agreements: Treasury Securities Sold by the Federal Reserve in the Temporary Open Market Operations'],
['RRPONTTLD', 'Overnight Reverse Repurchase Agreements: Total Securities Sold by the Federal Reserve in the Temporary Open Market Operations'],
['RRPONTSYAWARD', 'Overnight Reverse Repurchase Agreements Award Rate: Treasury Securities Sold by the Federal Reserve in the Temporary Open Market Operations'],
]
name_code = {'onrrp': code}
update_fred_data(name_code, fed_dir)
if __name__=="__main__":
# update_fomc_calendar()
# calculate_effr_expectation()
# plot_effr_expectation()
# update_fed_balance_sheet()
# update_onrrp_data()
pass