-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbtc.py
365 lines (294 loc) · 12.5 KB
/
btc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import os
import time
import numpy as np
import pandas as pd
from utils import *
from cftc import *
def update_crypto_data():
code = [
['CBBTCUSD', 'BTC'],
['CBETHUSD', 'ETH'],
['CBBCHUSD', 'BCH'],
['CBLTCUSD', 'LTC'],
]
name_code = {'crypto': code}
update_fred_data(name_code, data_dir)
LOOKINTOBITCOIN_DATANAME = [
'mvrv_zscore',
'unrealised_profit_loss',
'puell_multiple',
'reserve_risk',
'cvdd',
'realized_price',
'rhodl_ratio',
'vdd_multiple',
'hodl_waves',
'rcap_hodl_waves',
'whale_watching',
'bdd', # coin days destroyed
'bdd_supply_adjusted',
]
# https://www.lookintobitcoin.com/charts/mvrv-zscore/
def update_lookintobitcoin_data():
se = requests.session()
# example
# url = 'https://www.lookintobitcoin.com/django_plotly_dash/app/mvrv_zscore/_dash-update-component'
URL = 'https://www.lookintobitcoin.com/django_plotly_dash/app/{}/_dash-update-component'
payload = {"output":"chart.figure","outputs":{"id":"chart","property":"figure"},"inputs":[{"id":"url","property":"pathname","value":"/charts/relative-unrealized-profit--loss/"}],"changedPropIds":["url.pathname"]}
HEADERS = {'Host': 'www.lookintobitcoin.com',
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:106.0) Gecko/20100101 Firefox/106.0',
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8',
# 'Accept-Encoding': 'gzip, deflate, br',
'Content-Type': 'application/json',
'Content-Length': '181',
'Cookie':'csrftoken=pUbxeOYQLUK2oT7ULqJroQIUP1siMAJr;sessionid=0qezz4nv8ikf2kuyy3bptbk54eroh66v; cf_clearance=sxglDg7snwgfY6FM3.oOOA_sI3OGFYvNI8KsJdrtgo0-1698898797-0-1-6ece6fda.ec9d9f82.39cf303a-0.2.1698898797',
}
for name in LOOKINTOBITCOIN_DATANAME:
url = URL.format(name)
print(name)
while (1):
try:
r = se.post(url, headers=HEADERS, json=payload)
data_json = r.json()
break
except Exception as e:
print(e)
time.sleep(5)
datas = data_json['response']['chart']['figure']['data']
df = pd.DataFrame()
for i in range(len(datas)):
data = datas[i]
if 'customdata' in data:
temp_df = pd.DataFrame()
temp_df['time'] = data['x'][:len(data['y'])]
temp_df[data['name']] = data['y']
if (df.empty):
df = temp_df.copy()
else:
df = pd.merge(df, temp_df, on='time', how='outer')
path = os.path.join(btc_dir, name+'.csv')
if os.path.exists(path):
old_df = pd.read_csv(path)
old_df = pd.concat([old_df, df], axis=0)
old_df.drop_duplicates(subset=['time'], keep='last', inplace=True)
old_df['time'] = old_df['time'].apply(lambda x:pd.to_datetime(x, format='%Y-%m-%d'))
old_df.sort_values(by = 'time', inplace=True)
old_df['time'] = old_df['time'].apply(lambda x:datetime.datetime.strftime(x,'%Y-%m-%d'))
old_df.to_csv(path, encoding='utf-8', index=False)
else:
df.to_csv(path, encoding='utf-8', index=False)
# BTC持仓
def plot_crypto_position():
path = os.path.join(data_dir, 'crypto'+'.csv')
df = pd.read_csv(path)
t = pd.DatetimeIndex(pd.to_datetime(df['time'], format='%Y-%m-%d'))
btc = np.array(df['BTC'], dtype=float)
cftc_plot_financial(t, btc, 'BTC', code='133741', inst_name='CME:BTC')
eth = np.array(df['ETH'], dtype=float)
cftc_plot_financial(t, eth, 'ETH', code='146021', inst_name='CME:ETH')
def read_btc_data(name):
path = os.path.join(btc_dir, name+'.csv')
df = pd.read_csv(path)
t = pd.DatetimeIndex(pd.to_datetime(df['time'], format='%Y-%m-%d'))
cols = df.columns.tolist()
data = {}
for i in range(1, len(cols)):
data[cols[i]] = np.array(df[cols[i]], dtype=float)
return t, data
######################### PLOT #########################
def plot_mvrv_zscore():
t, data = read_btc_data('mvrv_zscore')
datas = [
[[[t,data['Z-Score'],'Z-Score','color=orange'],
[t,data['MVRV'],'MVRV','color=red,visible=False'],
],
[[t,np.log10(1+data['Market Cap']),'Market Cap (log10)','color=black'],
[t,np.log10(1+data['Realized Cap']),'Realized Cap (log10)','color=blue'],],'MVRV Z-Score'],
]
plot_many_figure(datas, start_time='2013-01-01')
def plot_nupl():
t, data = read_btc_data('unrealised_profit_loss')
datas = [
[[[t,np.log10(1+data['BTC Price']),'BTC Price (log10)','color=black'],
],
[[t,data['Net Unrealised Profit / Loss (NUPL)'],'Net Unrealised Profit / Loss (NUPL)','color=orange'],
],'NUPL'],
]
plot_many_figure(datas, start_time='2013-01-01')
def plot_bdd():
t, data = read_btc_data('bdd')
t1, cdd_7dma = moving_average(t, data['CDD (raw data)'], 7)
datas = [
[[[t,np.log10(1+data['BTC Price']),'BTC Price (log10)','color=black'],
],
[
[t,data['CDD (30dma)'],'CDD (30dma)','color=orange'],
[t,data['CDD (90dma)'],'CDD (90dma)','color=blue'],
],'Coin Days Destroyed'],
[[[t1,cdd_7dma,'CDD (7dma)','color=red'],
],
[],''],
]
plot_many_figure(datas, start_time='2013-01-01')
t, data = read_btc_data('bdd_supply_adjusted')
t1, cdd_7dma = moving_average(t, data['Supply Adjusted CDD (raw data)'], 7)
datas = [
[[[t,np.log10(1+data['BTC Price']),'BTC Price (log10)','color=black'],
],
[
[t,data['Supply Adjusted CDD (30dma)'],'Supply Adjusted CDD (30dma)','color=orange'],
[t,data['Supply Adjusted CDD (90dma)'],'Supply Adjusted CDD (90dma)','color=blue'],
],'Coin Days Destroyed Supply Adjusted'],
[[[t1,cdd_7dma,'Supply Adjusted CDD (7dma)','color=red'],
],
[],''],
]
plot_many_figure(datas, start_time='2013-01-01')
def plot_vdd_multiple():
t, data = read_btc_data('vdd_multiple')
datas = [
[[[t,np.log10(1+data['BTC Price']),'BTC Price (log10)','color=black'],
],
[
[t,data['VDD Multiple'],'VDD Multiple','color=orange'],
],'Value Days Destroyed (VDD) Multiple'],
]
plot_many_figure(datas, start_time='2013-01-01')
def plot_rhodl_ratio():
t, data = read_btc_data('rhodl_ratio')
datas = [
[[[t,np.log10(1+data['BTC Price']),'BTC Price (log10)','color=black'],
],
[[t,np.log10(1+data['RHODL Ratio']),'RHODL Ratio','color=orange'],
],'RHODL Ratio'],
]
plot_many_figure(datas, start_time='2013-01-01')
def plot_whale_watching():
t, data = read_btc_data('whale_watching')
datas = [
[[[t,np.log10(1+data['BTC Price']),'BTC Price (log10)','color=black'],],
[],'Whale Watching'],
[[[t,data['10yr+'],'10yr+','style=quad'],
],
[],''],
[[[t,data['7-9yr'],'7-9yr','style=quad'],
],
[],''],
[[[t,data['5-7yr'],'5-7yr','style=quad'],
],
[],''],
[[[t,data['4-5yr'],'4-5yr','style=quad'],
],
[],''],
]
plot_many_figure(datas, start_time='2017-01-01')
def plot_btc_vs_us_debt():
bill = ['Bill_4W', 'Bill_8W', 'Bill_13W', 'Bill_26W', 'Bill_52W']
note = ['Note_2Y', 'Note_3Y', 'Note_5Y', 'Note_7Y', 'Note_10Y']
bond = ['Bond_20Y', 'Bond_30Y']
df_dict = {}
for security in bill+note+bond:
path = os.path.join(treasury_auction_dir, security+'.csv')
df = pd.read_csv(path).fillna(0)
df.drop_duplicates(subset=['period_end_date'], keep='last', inplace=True)
t = pd.DatetimeIndex(pd.to_datetime(df['auction_date'], format='%Y-%m-%d'))
end_t = pd.DatetimeIndex(pd.to_datetime(df['period_end_date'], format='%Y-%m-%d'))
df_dict[security] = [t, end_t, df]
bill_sum = None
bill_sum_t = None
note_sum = None
note_sum_t = None
for security in bill:
if bill_sum is None:
bill_sum_t = df_dict[security][1]
bill_sum = np.array(df_dict[security][2]['offering_amt'])
else:
bill_sum_t, bill_sum = data_add(bill_sum_t, bill_sum, df_dict[security][1], np.array(df_dict[security][2]['offering_amt'], dtype=float))
bill_sum /= 1000000000
for security in note:
if note_sum is None:
note_sum_t = df_dict[security][1]
note_sum = np.array(df_dict[security][2]['offering_amt'])
else:
note_sum_t, note_sum = data_add(note_sum_t, note_sum, df_dict[security][1], np.array(df_dict[security][2]['offering_amt'], dtype=float))
note_sum /= 1000000000
path = os.path.join(data_dir, 'crypto'+'.csv')
df = pd.read_csv(path)
t = pd.DatetimeIndex(pd.to_datetime(df['time'], format='%Y-%m-%d'))
btc = np.array(df['BTC'], dtype=float)
eth = np.array(df['ETH'], dtype=float)
# frn+note
datas = [
[[],[],''],
[[],[],''],
]
for security in bill:
datas[0][0].append([df_dict[security][0], np.array(df_dict[security][2]['offering_amt'], dtype=float)/10000000000, security, 'style=dot_line'])
datas[0][1].append([t, btc, 'BTC', 'color=black'])
datas[1][0].append([bill_sum_t, bill_sum, 'bill offering amount', 'color=blue'])
datas[1][1].append([t, btc, 'BTC', 'color=black'])
plot_many_figure(datas, start_time='2017-05-01')
# frn+note
datas = [
[[],[],''],
[[],[],''],
[[],[],''],
]
for security in note:
datas[0][0].append([df_dict[security][0], np.array(df_dict[security][2]['offering_amt'], dtype=float)/10000000000, security, 'style=dot_line'])
datas[0][1].append([t, btc, 'BTC', 'color=black'])
datas[1][0].append([note_sum_t, note_sum, 'note offering amount', 'color=blue'])
datas[1][1].append([t, btc, 'BTC', 'color=black'])
datas[2][0].append([note_sum_t, note_sum, 'note offering amount', 'color=blue'])
datas[2][1].append([t, eth, 'ETH', 'color=black'])
plot_many_figure(datas, start_time='2017-05-01')
def plot_btc_vs_fed_balance_sheet():
path = os.path.join(data_dir, 'crypto'+'.csv')
df = pd.read_csv(path)
t = pd.DatetimeIndex(pd.to_datetime(df['time'], format='%Y-%m-%d'))
btc = np.array(df['BTC'], dtype=float)
eth = np.array(df['ETH'], dtype=float)
path = os.path.join(fed_dir, 'Factors Affecting Reserve Balances of Depository Institutions'+'.csv')
df = pd.read_csv(path)
t1 = pd.DatetimeIndex(pd.to_datetime(df['time'], format='%Y-%m-%d'))
total_asset = np.array(df['Assets: Other Factors Supplying Reserve Balances: Total factors supplying reserve funds: Wednesday level'], dtype=float)
rrp = np.array(df['Liabilities and Capital: Liabilities: Reverse repurchase agreements: Wednesday level'], dtype=float)
tga = np.array(df['Liabilities and Capital: Liabilities: Deposits with F.R. Banks, other than reserve balances: U.S. Treasury, General Account: Wednesday level'], dtype=float)
z = total_asset - rrp - tga
datas = [
[[[t,btc,'BTC','color=black'],
],
[[t1,z,'FED BALANCE SHEET - RRP - TGA','color=blue'],],''],
]
plot_many_figure(datas, start_time='2017-06-01')
def plot_eth_vs_btc():
path = os.path.join(data_dir, 'crypto'+'.csv')
df = pd.read_csv(path)
t = pd.DatetimeIndex(pd.to_datetime(df['time'], format='%Y-%m-%d'))
btc = np.array(df['BTC'], dtype=float)
eth = np.array(df['ETH'], dtype=float)
ratio = eth/btc
datas = [
[[[t,eth,'ETH',''],
],
[[t,btc,'BTC',''],],''],
[[[t,ratio,'ETH / BTC',''],
],
[],''],
]
plot_many_figure(datas, start_time='2017-06-01')
######################### PLOT #########################
if __name__=="__main__":
update_lookintobitcoin_data()
# plot_mvrv_zscore()
# plot_nupl()
# plot_bdd()
# plot_vdd_multiple()
# plot_rhodl_ratio()
# plot_whale_watching()
# update_crypto_data()
# # plot_crypto_position()
# plot_eth_vs_btc()
# plot_btc_vs_us_debt()
# plot_btc_vs_fed_balance_sheet()
pass