-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_sepsis_score.jl
56 lines (48 loc) · 1.84 KB
/
get_sepsis_score.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
using LinearAlgebra
function load_sepsis_model()
return []
end
function get_sepsis_score(data, model)
x_mean = [
83.8996, 97.0520, 36.8055, 126.2240, 86.2907,
66.2070, 18.7280, 33.7373, -3.1923, 22.5352,
0.4597, 7.3889, 39.5049, 96.8883, 103.4265,
22.4952, 87.5214, 7.7210, 106.1982, 1.5961,
0.6943, 131.5327, 2.0262, 2.0509, 3.5130,
4.0541, 1.3423, 5.2734, 32.1134, 10.5383,
38.9974, 10.5585, 286.5404, 198.6777]
x_std = [
17.6494, 3.0163, 0.6895, 24.2988, 16.6459,
14.0771, 4.7035, 11.0158, 3.7845, 3.1567,
6.2684, 0.0710, 9.1087, 3.3971, 430.3638,
19.0690, 81.7152, 2.3992, 4.9761, 2.0648,
1.9926, 45.4816, 1.6008, 0.3793, 1.3092,
0.5844, 2.5511, 20.4142, 6.4362, 2.2302,
29.8928, 7.0606, 137.3886, 96.8997]
c_mean = [60.8711, 0.5435, 0.0615, 0.0727, -59.6769, 28.4551]
c_std = [16.1887, 0.4981, 0.7968, 0.8029, 160.8846, 29.5367]
x = data[end, 1:34]
c = data[end, 35:40]
x_norm = nan_to_zero((x - x_mean) ./ x_std)
c_norm = nan_to_zero((c - c_mean) ./ c_std)
beta = [
0.1806, 0.0249, 0.2120, -0.0495, 0.0084,
-0.0980, 0.0774, -0.0350, -0.0948, 0.1169,
0.7476, 0.0323, 0.0305, -0.0251, 0.0330,
0.1424, 0.0324, -0.1450, -0.0594, 0.0085,
-0.0501, 0.0265, 0.0794, -0.0107, 0.0225,
0.0040, 0.0799, -0.0287, 0.0531, -0.0728,
0.0243, 0.1017, 0.0662, -0.0074, 0.0281,
0.0078, 0.0593, -0.2046, -0.0167, 0.1239]
rho = 7.8521
nu = 1.0389
xstar = vcat(x_norm, c_norm)
exp_bx = exp(dot(xstar, beta))
l_exp_bx = (4 / rho) ^ nu * exp_bx
score = 1 - exp(-l_exp_bx)
label = score > 0.45
return score, label
end
function nan_to_zero(x)
return map(y -> isnan(y) ? zero(y) : y, x)
end