forked from MatteoStefanini/DNAPerceiver
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_DNAPerceiver.py
304 lines (261 loc) · 13.4 KB
/
main_DNAPerceiver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import argparse
import numpy as np
import logging
import wandb
from dataset import *
from torch.optim import Adam, SGD, AdamW
from torch.optim.lr_scheduler import LambdaLR, StepLR
from scipy import stats
from torch.utils.data import DataLoader
import utils
from models import DNAPerceiver
from shutil import copyfile
from utils import Lamb, CyclicCosineDecayLR
torch.manual_seed(1234)
np.random.seed(1234)
logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.INFO)
_logger = logging.getLogger('train DNA Perceiver')
_print_freq = 50
device = torch.device('cuda')
torch.backends.cudnn.benchmark = True
def train(model, dataloader, optim, loss_fn, scheduler):
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Training Epoch: [{}]'.format(e)
for it, (halflife, promoter_seq_bool, promoter_seq_dna, y) in enumerate(metric_logger.log_every(dataloader, _print_freq, header)):
halflife, promoter_seq_bool, promoter_seq_dna, y = halflife.to(device), promoter_seq_bool.to(device), \
promoter_seq_dna.to(device), y.to(device)
model_output = model(halflife, promoter_seq_bool, promoter_seq_dna)
loss = loss_fn(model_output, y.float())
optim.zero_grad()
loss.backward()
optim.step()
if scheduler is not None and args.scheduler == 'LambdaLR' or args.scheduler == 'Cos':
scheduler.step()
metric_logger.update(loss=loss)
metric_logger.synchronize_between_processes()
return metric_logger.loss.global_avg
def evaluate_metrics(model, dataloader):
model.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
predictions_test = list()
y_test = list()
loss_mse = list()
header = 'Evaluation Epoch: [{}]'.format(e)
with torch.no_grad():
for it, (halflife, promoter_seq_bool, promoter_seq_dna, y) in enumerate(metric_logger.log_every(dataloader, _print_freq, header)):
halflife, promoter_seq_bool, promoter_seq_dna, y = halflife.to(device), promoter_seq_bool.to(device), \
promoter_seq_dna.to(device), y.to(device)
model_output = model(halflife, promoter_seq_bool, promoter_seq_dna)
loss = loss_fn(model_output, y.float())
predictions_test.extend(model_output.detach().cpu().numpy())
y_test.extend(y.float().detach().cpu().numpy())
metric_logger.update(loss=loss)
loss_mse.append(loss.detach().cpu().numpy())
slope, intercept, r_value, p_value, std_err = stats.linregress(predictions_test, y_test)
return r_value ** 2, np.mean(loss_mse)
if __name__ == '__main__':
_logger.info('perceiver_dna')
parser = argparse.ArgumentParser(description='DNAPerceiver')
parser.add_argument('--exp_name', type=str, default='DNAPerceiver')
parser.add_argument('--exp_name_slurm', type=str, default='DNAPerceiver')
parser.add_argument('--datadir', type=str, default='data/pM10Kb_1KTest')
parser.add_argument('--debug', action='store_true')
parser.add_argument('--workers', type=int, default=0)
parser.add_argument('--batch_size', type=int, default=50)
parser.add_argument('--leftpos', type=int, default=3000)
parser.add_argument('--rightpos', type=int, default=13500)
parser.add_argument('--m', type=int, default=0)
parser.add_argument('--depth', type=int, default=1)
parser.add_argument('--warmup', type=int, default=8000)
parser.add_argument('--resume_last', action='store_true')
parser.add_argument('--resume_best', action='store_true')
parser.add_argument('--optim', type=str, default='Adam', choices=('SGD', 'Adam', 'Lamb', 'AdamW'))
parser.add_argument('--lr', type=float, default=0.0005)
parser.add_argument('--weight_decay', type=float, default=0.02)
parser.add_argument('--dropout', type=float, default=0.2)
parser.add_argument('--scheduler', type=str, default='LambdaLR', choices=('None', 'StepLR', 'LambdaLR','Cos'))
parser.add_argument('--letter_emb_size', type=int, default=32)
parser.add_argument('--queries_dim', type=int, default=64)
parser.add_argument('--padding_idx', type=int, default=0)
parser.add_argument('--max_len', type=int, default=20000)
parser.add_argument('--num_latents', type=int, default=128)
parser.add_argument('--latent_dim', type=int, default=128)
parser.add_argument('--conv_queries', action='store_true')
parser.add_argument('--pos_emb', type=str, default='sin_learned', choices=('sin_fix', 'learned', 'sin_learned'))
parser.add_argument('--activation', type=str, default='None', choices=('None', 'tanh'))
parser.add_argument('--final_perceiver_head', action='store_true')
parser.add_argument('--kmer3', action='store_true')
parser.add_argument('--att_pool_size', type=int, default=12)
parser.add_argument('--wandb_project', type=str, default='DNAPerceiver')
args = parser.parse_args()
_logger.info(args)
if args.debug:
_print_freq = 1
if args.kmer3:
num_tokens = 65
kmer = 3
else:
num_tokens = 5
kmer = 1
if args.datadir.split('_')[-1] == 'Mouse':
args.exp_name = 'Mice_' + args.exp_name
args.wandb_project = 'mouse_DNAPerceiver'
dataset_train = XpressoTrain(args.datadir, kmer=kmer)
dataset_val = XpressoVal(args.datadir, kmer=kmer)
dataset_test = XpressoTest(args.datadir, kmer=kmer)
args.exp_name += str(args.letter_emb_size) + 'emb_' + str(args.depth) + 'enc_' + 'sinL_' +\
str(args.num_latents) + 'Lat_' + str(args.latent_dim) + 'd_' + str(args.optim) + '_wd' + \
str(args.weight_decay) + 'enf_' + str(args.queries_dim) + 'Q_' + \
str(args.att_pool_size) + 'pool_'+ args.scheduler
if args.scheduler == 'LambdaLR':
args.exp_name += str(args.warmup)
elif args.scheduler == 'Cos':
args.exp_name += str(args.warmup) + '_lr' + str(args.lr)
else:
args.exp_name += '_lr' + str(args.lr)
if args.activation == 'tanh':
args.exp_name += '_' + str(args.activation)
if args.m > 0:
args.exp_name += '_m' + str(args.m)
args.exp_name += '_L' + str(args.leftpos) + '_R' + str(args.rightpos)
args.exp_name += '_drp' + str(args.dropout)
if not args.resume_last and not args.resume_best:
args.wandb_id = wandb.util.generate_id()
wandb.init(entity='matteos', project=args.wandb_project, config=args, id=args.wandb_id,
mode='disabled' if args.debug else 'online')
else:
if args.resume_last:
fname = 'saved_models/%s_last.pth' % args.exp_name
else:
fname = 'saved_models/%s_best.pth' % args.exp_name
if os.path.exists(fname):
data = torch.load(fname)
if 'wandb_id' in data:
args.wandb_id = data['wandb_id']
wandb.init(entity='matteos', project=args.wandb_project, config=args, resume=args.wandb_id,
mode='disabled' if args.debug else 'online')
wandb.run.name = args.exp_name
args.max_len = args.rightpos - args.leftpos
#Model
model = DNAPerceiver(dim=args.letter_emb_size, num_tokens=num_tokens, max_seq_len=args.max_len, depth=args.depth,
num_latents=args.num_latents, latent_dim=args.latent_dim, pos_emb=args.pos_emb,
activation=args.activation, leftpos=args.leftpos,rightpos=args.rightpos, dropout=args.dropout,
queries_dim=args.queries_dim, final_perceiver_head=args.final_perceiver_head,
att_pool_size=args.att_pool_size).to(device)
# Optimizers for Transformers
def lambda_lr(s):
warm_up = args.warmup
s += 1
return (args.letter_emb_size ** -.5) * min(s ** -.5, s * warm_up ** -1.5)
if args.optim == 'Adam' and args.scheduler != 'LambdaLR':
optim = Adam(model.parameters(), lr=args.lr, betas=(0.9, 0.98))
elif args.optim == 'Adam' and args.scheduler == 'LambdaLR':
optim = Adam(model.parameters(), lr=1, betas=(0.9, 0.98), weight_decay=args.weight_decay)
elif args.optim == 'AdamW' and args.scheduler == 'LambdaLR':
optim = AdamW(model.parameters(), lr=1, betas=(0.9, 0.98), weight_decay=args.weight_decay)
elif args.optim == 'Lamb':
optim = Lamb(model.parameters(), lr=args.lr, betas=(0.9, 0.999))
else:
optim = SGD(model.parameters(), lr=args.lr, momentum=0.9)
if args.scheduler == 'StepLR':
scheduler = StepLR(optim, step_size=30, gamma=0.5)
elif args.scheduler == 'LambdaLR':
scheduler = LambdaLR(optim, lambda_lr)
elif args.scheduler == 'Cos':
scheduler = CyclicCosineDecayLR(optim,5000,args.lr/10,7000,None,args.lr/2,4000,args.lr/2,verbose=False)
else:
scheduler = None
loss_fn = torch.nn.MSELoss()
best_r_quadro_val = .0
best_r_quadro_test = .0
best_test_mse = .0
patience = 0
start_epoch = 0
if args.resume_last or args.resume_best:
if args.resume_last:
fname = 'saved_models/%s_last.pth' % args.exp_name
else:
fname = 'saved_models/%s_best.pth' % args.exp_name
if os.path.exists(fname):
data = torch.load(fname)
torch.set_rng_state(data['torch_rng_state'])
torch.cuda.set_rng_state(data['cuda_rng_state'])
np.random.set_state(data['numpy_rng_state'])
model.load_state_dict(data['state_dict'])
optim.load_state_dict(data['optimizer'])
if scheduler is not None:
scheduler.load_state_dict(data['scheduler'])
start_epoch = data['epoch'] + 1
best_r_quadro_val = data['best_r_quadro_val']
best_r_quadro_test = data['best_r_quadro_test']
patience = data['patience']
_logger.info('Resuming from epoch %d, validation R2 %f, test R2 %f' % (
data['epoch'], data['best_r_quadro_val'], data['best_r_quadro_test']))
train_sampler = torch.utils.data.RandomSampler(dataset_train)
val_sampler = torch.utils.data.SequentialSampler(dataset_val)
test_sampler = torch.utils.data.SequentialSampler(dataset_test)
dataloader_train = DataLoader(dataset_train, batch_size=args.batch_size, num_workers=args.workers,
sampler=train_sampler, pin_memory=True)
dataloader_val = DataLoader(dataset_val, batch_size=args.batch_size, sampler=val_sampler, pin_memory=True)
dataloader_test = DataLoader(dataset_test, batch_size=args.batch_size, sampler=test_sampler, pin_memory=True)
for e in range(start_epoch, start_epoch + 550):
train_mse_loss = train(model, dataloader_train, optim, loss_fn, scheduler)
wandb.log({"Train loss MSE": train_mse_loss, "epoch": e})
_logger.info("Train loss MSE: %s", train_mse_loss)
print("Train loss MSE: %s", train_mse_loss)
if scheduler is not None and args.scheduler == 'StepLR':
scheduler.step()
r_quadro_val, val_mse = evaluate_metrics(model, dataloader_val)
_logger.info("Validation R2: %s - Val Loss MSE: %s" % (r_quadro_val, val_mse))
print("Validation R2: %s - Val Loss MSE: %s" % (r_quadro_val, val_mse))
wandb.log({"Val loss MSE": val_mse, "epoch": e})
wandb.log({"Val R2": r_quadro_val, "epoch": e})
r_quadro_test, test_mse = evaluate_metrics(model, dataloader_test)
_logger.info("Test R2: %s - Test Loss MSE: %s" % (r_quadro_test, test_mse))
print("Test R2: %s - Test Loss MSE: %s" % (r_quadro_test, test_mse))
wandb.log({"Test loss MSE": test_mse, "epoch": e})
wandb.log({"Test R2": r_quadro_test, "epoch": e})
# Prepare for next epoch
best = False
if r_quadro_val >= best_r_quadro_val:
best_r_quadro_val = r_quadro_val
wandb.run.summary["Best Val R2"] = best_r_quadro_val
patience = 0
best = True
else:
patience += 1
best_test = False
if r_quadro_test >= best_r_quadro_test:
best_r_quadro_test = r_quadro_test
wandb.run.summary["best_test_R2"] = best_r_quadro_test
best_test = True
exit_train = False
if patience == 150:
_logger.info('patience reached.')
print('patience reached.')
exit_train = True
save_dict = {
'torch_rng_state': torch.get_rng_state(),
'cuda_rng_state': torch.cuda.get_rng_state(),
'numpy_rng_state': np.random.get_state(),
'epoch': e,
'optimizer': optim.state_dict(),
'scheduler': scheduler.state_dict() if scheduler else None,
'patience': patience,
'best_r_quadro_val': best_r_quadro_val,
'best_r_quadro_test': best_r_quadro_test,
'wandb_id': args.wandb_id,
'train_loss_mse': train_mse_loss,
'val_loss_mse': val_mse,
'test_loss_mse': test_mse,
'state_dict': model.state_dict()
}
if not args.debug:
torch.save(save_dict, 'saved_models/%s_last.pth' % args.exp_name)
if best:
copyfile('saved_models/%s_last.pth' % args.exp_name, 'saved_models/%s_best.pth' % args.exp_name)
if best_test:
copyfile('saved_models/%s_last.pth' % args.exp_name, 'saved_models/%s_best_test.pth' % args.exp_name)
if exit_train:
break