-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathpretrain_softmax_model.py
75 lines (61 loc) · 3.21 KB
/
pretrain_softmax_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import os
import numpy as np
from argparse import ArgumentParser
import tensorflow as tf
import tensorflow.keras.layers as L
from tensorflow.keras.models import Model
from tensorflow.keras.callbacks import ModelCheckpoint, CSVLogger, EarlyStopping
from tensorflow.keras.applications.densenet import DenseNet121
from utils.image_data_generators import get_generators
np.random.seed(42)
tf.random.set_seed(42)
tf.keras.backend.clear_session()
def get_model(num_classes, embedding_size, target_size):
# get feature vector extracted using DenseNet
feat_extractor = DenseNet121(
input_shape=(target_size, target_size, 3),
include_top=False, weights=None)
x = L.Flatten()(feat_extractor.output)
# BN-Dropout-FC-BN
x = L.BatchNormalization()(x)
x = L.Dropout(0.25)(x)
x = L.Dense(embedding_size, activation="relu")(x)
x = L.BatchNormalization()(x)
# compile model with softmax loss function
predictions = L.Dense(num_classes, activation="softmax")(x)
model = Model(inputs=feat_extractor.input, outputs=predictions)
model.compile("adam", loss="sparse_categorical_crossentropy",
metrics=["accuracy"])
return model
def train_model(model, dataset, generators, embedding_size):
train_generator, val_generator = generators[0], generators[1]
out_path = os.path.join(os.path.abspath(
""), "models", dataset + "_softmax_" + str(embedding_size) + "d.h5")
log = CSVLogger(out_path[:-2] + "log")
mc = ModelCheckpoint(out_path, monitor="val_loss",
save_best_only=True, verbose=1)
es = EarlyStopping(patience=5, monitor="val_loss",
restore_best_weights=True, verbose=1)
history = model.fit_generator(train_generator,
steps_per_epoch=train_generator.n // train_generator.batch_size,
validation_data=val_generator,
validation_steps=val_generator.n // val_generator.batch_size,
shuffle=False, epochs=1000, callbacks=[log, mc, es], verbose=1)
return model, history
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("-b", "--batch_size", required=False, type=int, default=64,
help="batch size to use in training")
parser.add_argument("-e", "--embedding_size", required=False, type=int, default=512,
help="embedding size to use in training")
parser.add_argument("-i", "--image_size", required=False, type=int, default=96,
help="image size to use in training")
args = vars(parser.parse_args())
dataset = "vggface2_train"
generators = get_generators(
dataset, batch_size=args["batch_size"], target_size=args["image_size"], metric="softmax")
train_generator, val_generator, test_generator = generators[0], generators[1], generators[2]
model = get_model(num_classes=train_generator.num_classes,
embedding_size=args["embedding_size"], target_size=args["image_size"])
model = train_model(
model, dataset, generators, embedding_size=args["embedding_size"])