forked from anArkitek/ASG-LDL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
303 lines (248 loc) · 13.2 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
from functools import reduce
import os
import sys
import time
import argparse
import torch
from torch.nn.functional import normalize
from torch.optim import Adam
from torch.optim.lr_scheduler import ExponentialLR
from torch.utils.data import dataloader
from torch.utils.tensorboard import SummaryWriter
import torchvision
from networks.resnet import ResnetEncoder
from the300w_lp_dataset import The300WLPDataset
from utils.sys_utils import isRotationMatrix, normalizeQuat, normalizeVec, quat_from_file, the300w_lp_R2Euler
from utils.torch_utils import KentDistribution, PointsGenerator, ErrorMeter
from losses import LossCalculator
class Trainer:
def __init__(self, opts: argparse.Namespace) -> None:
self.opts = opts
self.loss_calculator = LossCalculator(self.opts)
if self.opts.rot_type in ["euler", "lie"] and not self.opts.do_smooth:
self.out_features = 3
elif self.opts.rot_type == "quat" and not self.opts.do_smooth:
self.out_features = 4
elif self.opts.rot_type == "rot_mat" and not self.opts.do_smooth:
self.out_features = 9
elif self.opts.rot_type == "rot_mat" and self.opts.do_smooth:
self.out_features = self.opts.num_pts * 3
gs = PointsGenerator(self.opts.num_pts)
self.gs_pts = torch.tensor(gs.generate_pts(), dtype=torch.float32).to(self.opts.device)
self.gs_pts_T = self.gs_pts.permute(1, 0).contiguous()
self.indentifier = self.create_model_indentifier()
print(self.indentifier)
# BACKBONE
if self.opts.backbone == "resnet50":
backbone = ResnetEncoder(opts=self.opts, num_layers=50, out_features=self.out_features, pretrained=True)
elif self.opts.backbone == "resnet18":
backbone = ResnetEncoder(opts=self.opts, num_layers=18, out_features=self.out_features, pretrained=True)
else:
sys.exit("Not supported backbone.")
self.models = {}
self.models["backbone"] = backbone
self.models["backbone"].to(self.opts.device)
# OPTIMIZER
self.parameters_to_train = self.models["backbone"].parameters()
self.optimizer = Adam(self.parameters_to_train, self.opts.learning_rate)
self.lr_scheduler = ExponentialLR(optimizer=self.optimizer, gamma=self.opts.lr_gamma)
if self.opts.snapshot_path is not None:
self.load_model()
# DATASET
train_dataset = The300WLPDataset(self.opts, is_train=True)
val_dataset = The300WLPDataset(self.opts, is_train=False)
self.train_loader = dataloader.DataLoader(dataset=train_dataset,
batch_size=self.opts.batch_size,
shuffle=True,
num_workers=self.opts.num_workers,
pin_memory=True)
self.val_loader = dataloader.DataLoader(dataset=val_dataset,
batch_size=1,
num_workers=self.opts.num_workers,
pin_memory=True)
# ------------------------------ steps ------------------------------ #
self.train_iter_nums = len(train_dataset) // self.opts.batch_size * self.opts.num_epochs
self.val_iter_nums = len(train_dataset) // self.opts.batch_size
# ------------------------------ tensorboard ------------------------------ #
self.writers = {}
for mode in ["train", "val"]:
self.writers[mode] = SummaryWriter(log_dir=os.path.join(self.opts.tensorboard_path,
self.indentifier))
# ------------------------------ loss ------------------------------ #
self.mse = torch.nn.MSELoss(reduction="mean").to(self.opts.device)
self.kl_div = torch.nn.KLDivLoss(reduction="batchmean", log_target=False).to(self.opts.device)
def train(self):
self.start_time = time.time()
self.min_mae = sys.float_info.max
for self.curr_epoch in range(self.opts.num_epochs):
self.run_epoch()
self.error_meter = ErrorMeter(self.opts)
val_loss = self.val()
curr_mae = self.error_meter.compute_mae()
self.error_meter.print_errors()
if curr_mae < self.min_mae:
self.save_model()
self.min_mae = curr_mae
def run_epoch(self):
print("-" * 30, "Start Training", "-" * 30)
self.set_train()
for self.curr_batch_idx, [[imgs, labels], [img_names, label_names, eulers]] in enumerate(self.train_loader):
imgs = imgs.to(self.opts.device)
labels = labels.to(self.opts.device)
out = self.models["backbone"](imgs)
train_losses = self.compute_loss(out, labels)
self.write2Tensorboard(mode="train", losses=train_losses)
if (self.curr_batch_idx + 1) % 200 == 0:
self.write2Terminal(mode="train", losses=train_losses)
# self.writeASGParams(eulers, out[:, :6])
self.optimizer.zero_grad()
train_losses["total_loss"].backward()
self.optimizer.step()
self.lr_scheduler.step()
def compute_loss(self, pred, gt):
"""
Args:
pred (torch.Tensor): Size([batch_size, M])
gt (torch.Tensor): Size([batch_size, M])
Returns:
Dict of losses
"""
losses = {}
total_loss = 0.
if self.opts.rot_type in ["euler", "lie"] and not self.opts.do_smooth:
losses["mse"] = self.mse(pred, gt)
elif self.opts.rot_type == "quat" and not self.opts.do_smooth:
pred = normalizeQuat(quat=pred)
losses["mse"] = self.mse(pred, gt)
elif self.opts.rot_type == "rot_mat" and not self.opts.do_smooth:
losses = self.loss_calculator.rot_mat_loss(pred, gt)
elif self.opts.rot_type == "rot_mat" and self.opts.do_smooth:
losses = self.loss_calculator.rot_mat_loss_with_asg(pred, gt)
for loss_name, loss_val in losses.items():
total_loss += loss_val
losses["total_loss"] = total_loss
return losses
def val(self):
self.set_eval()
total_val_losses = {}
with torch.no_grad():
for batch_idx, [[imgs, labels], [img_indices, label_indices, eulers]] in enumerate(self.val_loader):
imgs = imgs.to(self.opts.device)
labels = labels.to(self.opts.device)
out = self.models["backbone"](imgs)
val_losses = self.compute_loss(out, labels)
self.error_meter.update_errors(pred=out, target=labels)
self.write2Tensorboard(mode="val", losses=val_losses)
for key, val in val_losses.items():
if key in total_val_losses.keys():
total_val_losses[key] += val / len(self.val_loader)
else:
total_val_losses[key] = val / len(self.val_loader)
self.write2Terminal(mode="val", losses=total_val_losses)
return total_val_losses["total_loss"].cpu().item()
def create_model_indentifier(self):
model_dir = "{}_{}_smooth:{}".format(self.opts.backbone, self.opts.rot_type, self.opts.do_smooth)
if self.opts.rot_type == "rot_mat":
if not self.opts.do_smooth:
weight_info_dir = "ortho_loss_weight:{:.2f}".format(self.opts.ortho_loss_weight)
else:
weight_info_dir = "numPts:{:d}_softLossWeight:{:.3f}_shapeRegWeight:{:.3f}_orthoLossWeight:{:.3f}".format(
self.opts.num_pts, self.opts.soft_loss_weight, self.opts.shape_regular_weight, self.opts.ortho_loss_weight
)
identifier = os.path.join(model_dir, weight_info_dir)
else:
identifier = model_dir
return identifier
def save_model(self):
save_dir = os.path.join(self.opts.prefix, self.opts.save_path, self.indentifier, "epoch_{:d}".format(self.curr_epoch))
if not os.path.exists(save_dir):
os.makedirs(save_dir)
print("saving model to {}".format(save_dir))
for model_name, model in self.models.items():
model_save_path = os.path.join(save_dir, "{}.pth".format(model_name))
model2save = model.state_dict()
torch.save(model2save, model_save_path)
optim_save_path = os.path.join(save_dir, "{}.pth".format("adam"))
torch.save(self.optimizer.state_dict(), optim_save_path)
with open(os.path.join(save_dir, "train_opt_log.txt"), "a") as f:
for k in sorted (vars(self.opts).keys()):
f.write("'%s':'%s', \n" % (k, vars(self.opts)[k]))
def load_model(self):
with open(os.path.join(self.opts.snapshot_path, "train_opt_log.txt"), "r") as f:
lines = f.readlines()
self.opt_dict = {}
for line in lines:
key = line.split(":")[0].strip("'")
val = line[len(key) + 3: -3].strip("'")
self.opt_dict[key] = val
self.opts.rot_type = self.opt_dict["rot_type"]
self.opts.do_smooth = {"True": True, "False": False}[self.opt_dict["do_smooth"]]
self.opts.backbone = self.opt_dict["backbone"]
self.opts.device = self.opt_dict["device"]
self.opts.img_size = int(self.opt_dict["img_size"])
self.opts.num_pts = int(self.opt_dict["num_pts"])
self.opts.max_kappa = float(self.opt_dict["max_kappa"])
# load_ model
if self.opts.rot_type in ["euler", "lie"] and not self.opts.do_smooth:
self.out_features = 3
elif self.opts.rot_type == "quat" and not self.opts.do_smooth:
self.out_features = 4
elif self.opts.rot_type == "rot_mat" and not self.opts.do_smooth:
self.out_features = 9
elif self.opts.rot_type == "rot_mat" and self.opts.do_smooth:
self.out_features = self.opts.num_pts * 3
gs = PointsGenerator(self.opts.num_pts)
self.gs_pts = gs.generate_pts()
if self.opts.backbone == "resnet50":
backbone = ResnetEncoder(opts=self.opts, num_layers=50, out_features=self.out_features, pretrained=True)
elif self.opts.backbone == "resnet18":
backbone = ResnetEncoder(opts=self.opts, num_layers=18, out_features=self.out_features, pretrained=True)
self.models = {}
self.models["backbone"] = backbone
self.models["backbone"].to(self.opts.device)
assert os.path.isdir(self.opts.snapshot_path), "Cannot find folder {}".format(self.opts.snapshot_path)
print("loading model from folder {}".format(self.opts.snapshot_path))
for model_name in self.models:
print("Loading {} weights...".format(model_name))
path = os.path.join(self.opts.snapshot_path, "{}.pth".format(model_name))
model_dict = self.models[model_name].state_dict()
pretrained_dict = torch.load(path)
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
model_dict.update(pretrained_dict)
self.models[model_name].load_state_dict(model_dict)
optimizer_load_path = os.path.join(self.opts.snapshot_path, "adam.pth")
if os.path.isfile(optimizer_load_path):
print("Loading Adam weights")
optimizer_dict = torch.load(optimizer_load_path)
self.optimizer.load_state_dict(optimizer_dict)
else:
print("Cannot find Adam weights so Adam is randomly initialized")
def set_train(self):
for m in self.models.values():
m.train()
print("Training status has been set.")
def set_eval(self):
for m in self.models.values():
m.eval()
print("Eval status has been set.")
def write2Tensorboard(self, mode, losses):
for loss_name, loss_val in losses.items():
self.writers[mode].add_scalar("{}/{}".format(mode, loss_name), loss_val, self.curr_epoch)
def write2Terminal(self, mode, losses):
if mode == "train":
msg = "Epoch: {}/{} | Iter: {}/{} | ".format(
self.curr_epoch, self.opts.num_epochs,
self.curr_batch_idx, self.train_iter_nums)
for key, val in losses.items():
msg += "{}: {:.8f} | ".format(key, val.cpu().item())
else:
msg = "val_loss || "
for key, val in losses.items():
msg += "{}: {:.8f} | ".format(key, val.cpu().item())
print(msg)
def writeASGParams(self, eulers, params):
with open("300W-LP-ASG-PARAMS.txt", "a+") as f:
for i in range(params.shape[0]):
f.write(str(eulers[i, 0].item()) + "," + str(eulers[i, 1].item()) + "," + str(eulers[i, 2].item()) + "," + \
str(params[i, 0].item()) + "," + str(params[i, 1].item()) + "," + str(params[i, 2].item()) + "," + \
str(params[i, 3].item()) + "," + str(params[i, 4].item()) + "," + str(params[i, 5].item()) + "\n")