-
Notifications
You must be signed in to change notification settings - Fork 100
/
Copy pathmnist_cnn_pytorch.py
134 lines (114 loc) · 5.75 KB
/
mnist_cnn_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
from __future__ import print_function
import sys, argparse
from time import time
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
tracker_length = 30
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 32, kernel_size=3)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3)
self.fc1 = nn.Linear(12*12*64, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = F.relu(self.conv1(x)) # 28x28x32 -> 26x26x32
x = F.relu(self.conv2(x)) # 26x26x32 -> 24x24x64
x = F.max_pool2d(x, 2) # 24x24x64 -> 12x12x64
x = F.dropout(x, p=0.25, training=self.training)
x = x.view(-1, 12*12*64) # flatten 12x12x64 = 9216
x = F.relu(self.fc1(x)) # fc 9216 -> 128
x = F.dropout(x, p=0.5, training=self.training)
x = self.fc2(x) # fc 128 -> 10
return F.log_softmax(x, dim=1) # to 10 logits
def train(args, model, device, train_loader, optimizer):
model.train()
start_time = time()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
percentage = 100. * batch_idx / len(train_loader)
cur_length = int((tracker_length * int(percentage)) / 100)
bar = '=' * cur_length + '>' + '-' * (tracker_length - cur_length)
sys.stdout.write('\r{}/{} [{}] - loss: {:.4f}'.format(
batch_idx * len(data), len(train_loader.dataset),
bar, loss.item()))
sys.stdout.flush()
train_time = time() - start_time
sys.stdout.write('\r{}/{} [{}] - {:.1f}s {:.1f}us/step - loss: {:.4f}'.format(
len(train_loader.dataset), len(train_loader.dataset), '=' * tracker_length,
train_time, (train_time / len(train_loader.dataset)) * 1000000.0, loss.item()))
sys.stdout.flush()
return len(train_loader.dataset), train_time, loss.item()
def test(args, model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(output, target, size_average=False).item() # sum up batch loss
pred = output.max(1, keepdim=True)[1] # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
test_accuracy = correct / len(test_loader.dataset)
return test_loss, test_accuracy
def main():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=128, metavar='N',
help='input batch size for training (default: 128)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=12, metavar='N',
help='number of epochs to train (default: 12)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
device = torch.device("cuda" if use_cuda else "cpu")
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
model = Net().to(device)
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
for epoch in range(1, args.epochs + 1):
print("\nEpoch {}/{}".format(epoch, args.epochs))
train_len, train_time, train_loss = train(args, model, device, train_loader, optimizer)
test_loss, test_accuracy = test(args, model, device, test_loader)
sys.stdout.write('\r{}/{} [{}] - {:.1f}s {:.1f}us/step - loss: {:.4f} - val_loss: {:.4f} - val_acc: {:.4f}'.format(
train_len, train_len, '=' * tracker_length,
train_time, (train_time / train_len) * 1000000.0, train_loss,
test_loss, test_accuracy))
sys.stdout.flush()
if __name__ == '__main__':
main()