forked from kodecocodes/swift-algorithm-club
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMRPrimality.swift
100 lines (85 loc) · 3.04 KB
/
MRPrimality.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
//
// MRPrimality.swift
//
//
// Created by Sahn Cha on 2016. 10. 18..
//
//
import Foundation
enum MillerRabinError: Error {
case primeLowAccuracy
case primeLowerBorder
case uIntOverflow
}
/*
The Miller–Rabin test relies on an equality or set of equalities that
hold true for prime values, then checks whether or not they hold for
a number that we want to test for primality.
- Parameter n: an odd integer to be tested for primality;
- Parameter k: a parameter that determines the accuracy of the test
- throws: Can throw an error of type `MillerRabinError`.
- Returns: composite if n is composite, otherwise probably prime
*/
func checkWithMillerRabin(_ n: UInt, accuracy k: UInt = 1) throws -> Bool {
guard k > 0 else { throw MillerRabinError.primeLowAccuracy }
guard n > 0 else { throw MillerRabinError.primeLowerBorder }
guard n > 3 else { return true }
// return false for all even numbers bigger than 2
if n % 2 == 0 {
return false
}
let s: UInt = UInt((n - 1).trailingZeroBitCount)
let d: UInt = (n - 1) >> s
guard UInt(pow(2.0, Double(s))) * d == n - 1 else { throw EncryptionError.primeLowerBorder }
/// Inspect whether a given witness will reveal the true identity of n.
func tryComposite(_ a: UInt, d: UInt, n: UInt) throws -> Bool? {
var x = try calculateModularExponentiation(base: a, exponent: d, modulus: n)
if x == 1 || x == (n - 1) {
return nil
}
for _ in 1..<s {
x = try calculateModularExponentiation(base: x, exponent: 2, modulus: n)
if x == 1 {
return false
} else if x == (n - 1) {
return nil
}
}
return false
}
for _ in 0..<k {
let a = UInt.random(in: 2..<n-2)
if let composite = try tryComposite(a, d: d, n: n) {
return composite
}
}
return true
}
/*
Calculates the modular exponentiation based on `Applied Cryptography by Bruce Schneier.`
in `Schneier, Bruce (1996). Applied Cryptography: Protocols, Algorithms,
and Source Code in C, Second Edition (2nd ed.). Wiley. ISBN 978-0-471-11709-4.`
- Parameter base: The natural base b.
- Parameter base: The natural exponent e.
- Parameter base: The natural modulus m.
- Throws: Can throw a `uIntOverflow` if the modulus' square exceeds the memory
limitations of UInt on the current system.
- Returns: The modular exponentiation c.
*/
private func calculateModularExponentiation(base: UInt, exponent: UInt, modulus: UInt) throws -> UInt {
guard modulus > 1 else { return 0 }
guard !(modulus-1).multipliedReportingOverflow(by: (modulus-1)).overflow else {
throw MillerRabinError.uIntOverflow
}
var result: UInt = 1
var exponentCopy = exponent
var baseCopy = base % modulus
while exponentCopy > 0 {
if exponentCopy % 2 == 1 {
result = (result * baseCopy) % modulus
}
exponentCopy = exponentCopy >> 1
baseCopy = (baseCopy * baseCopy) % modulus
}
return result
}