-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathshow_result.py
83 lines (70 loc) · 2.61 KB
/
show_result.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import argparse
import glob
import pandas as pd
from fastchat.llm_judge.show_result import display_result_pairwise
def display_result_single(args):
if args.input_files is None:
input_files = glob.glob(
f"data/{args.bench_name}/model_judgment/{args.judge_model}_single/*.jsonl"
)
else:
input_files = glob.glob(args.input_file)
print(f"Input files: {input_files}")
df_all = pd.concat(
[pd.read_json(input_file, lines=True) for input_file in input_files]
)
df = df_all[["model", "score", "turn"]]
df = df[df["score"] != -1]
if args.model_list is not None:
df = df[df["model"].isin(args.model_list)]
print("\n########## First turn ##########")
df_1 = df[df["turn"] == 1].groupby(["model", "turn"]).mean()
print(df_1.sort_values(by="score", ascending=False))
if len(df[df["turn"] == 2]) > 0:
print("\n########## Second turn ##########")
df_2 = df[df["turn"] == 2].groupby(["model", "turn"]).mean()
print(df_2.sort_values(by="score", ascending=False))
print("\n########## Average ##########")
df_3 = df[["model", "score"]].groupby(["model"]).mean()
print(df_3.sort_values(by="score", ascending=False))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--bench-name", type=str, default="pfmt_bench_fin_ja")
parser.add_argument(
"--input-files",
type=str,
nargs="+",
default=None,
)
parser.add_argument("--judge-model", type=str, default="gpt-4o")
parser.add_argument("--baseline-model", type=str, default="gpt-3.5-turbo")
parser.add_argument(
"--model-list",
type=str,
nargs="+",
default=None,
help="A list of models to be evaluated",
)
parser.add_argument(
"--mode",
type=str,
default="single",
choices=["pairwise-baseline", "pairwise-all", "single"],
help=(
"Evaluation mode. "
"`pairwise-baseline` runs pairwise comparision against a baseline. "
"`pairwise-all` runs pairwise comparision between all pairs. "
"`single` runs single answer grading."
),
)
args = parser.parse_args()
if args.model_list:
args.model_list = list(map(lambda x: x.replace("/", "_"), args.model_list))
if args.mode == "single":
display_result_func = display_result_single
else:
if args.mode == "pairwise-all":
args.baseline_model = None
display_result_func = display_result_pairwise
print(f"Mode: {args.mode}")
display_result_func(args)