-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathevaluate.py
148 lines (110 loc) · 5.24 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import argparse
import multiprocessing
import os
from pathlib import Path
import librosa
import musdb
import museval
import numpy as np
import pandas as pd
import simplejson
import torch
from pandas.io.json import json_normalize
from model.tasnet import MultiTasNet
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model_dir", required=True, type=str, help="Directory of the model to evaluate (in the './checkpoints' folder).")
parser.add_argument("--musdb_path", required=True, type=str, help="Path to the MUSDB18 dataset.")
parser.add_argument("--threads", default=4, type=int, help="Parallelize the evaluation to more threads.")
args = parser.parse_args()
use_cuda = torch.cuda.is_available()
device = torch.device("cuda:0" if use_cuda else "cpu")
checkpoint = torch.load(f"checkpoints/{args.model_dir}/best_checkpoint")
model_args = checkpoint["args"]
network = MultiTasNet(model_args).to(device)
network.load_state_dict(checkpoint["state_dict"])
mus_test = musdb.DB(root=args.musdb_path, subsets="test")
def separate_sample(network, track, verbose=False):
audio = track.audio.astype('float32').transpose(1, 0)
mix = [librosa.core.resample(audio, 44100, s, res_type='kaiser_best', fix=False) for s in[8000, 16000, 32000]]
mix = [librosa.util.fix_length(m, (mix[0].shape[-1]+1)*(2**i)) for i, m in enumerate(mix)]
mix = [torch.from_numpy(s).float().to(device).unsqueeze_(1) for s in mix]
mix = [s / s.std(dim=-1, keepdim=True) for s in mix]
mix_left = [s[0:1, :, :] for s in mix]
mix_right = [s[1:2, :, :] for s in mix]
del mix
network.eval()
with torch.no_grad():
separation_left = network.inference(mix_left, n_chunks=8)[-1].cpu().squeeze_(2) # shape: (5, T)
separation_right = network.inference(mix_right, n_chunks=8)[-1].cpu().squeeze_(2) # shape: (5, T)
separation = torch.cat([separation_left, separation_right], 0).numpy()
if verbose: print(separation.shape)
estimates = {
'drums': librosa.core.resample(separation[:, 0, :], 32000, 44100, res_type='kaiser_best', fix=True)[:, :track.audio.shape[0]].T,
'bass': librosa.core.resample(separation[:, 1, :], 32000, 44100, res_type='kaiser_best', fix=True)[:, :track.audio.shape[0]].T,
'other': librosa.core.resample(separation[:, 2, :], 32000, 44100, res_type='kaiser_best', fix=True)[:, :track.audio.shape[0]].T,
'vocals': librosa.core.resample(separation[:, 3, :], 32000, 44100, res_type='kaiser_best', fix=True)[:, :track.audio.shape[0]].T,
}
a_l = np.array([estimates['drums'][:, 0], estimates['bass'][:, 0], estimates['other'][:, 0], estimates['vocals'][:, 0]]).T
a_r = np.array([estimates['drums'][:, 1], estimates['bass'][:, 1], estimates['other'][:, 1], estimates['vocals'][:, 1]]).T
b_l = track.audio[:, 0]
b_r = track.audio[:, 1]
if verbose: print(a_l.shape, b_l.shape)
sol_l = np.linalg.lstsq(a_l, b_l, rcond=None)[0]
sol_r = np.linalg.lstsq(a_r, b_r, rcond=None)[0]
e_l = a_l * sol_l
e_r = a_r * sol_r
separation = np.array([e_l, e_r]) # shape: (channel, time, instrument)
if verbose: print(separation.shape)
estimates = {
'drums': separation[:, :, 0].T,
'bass': separation[:, :, 1].T,
'other': separation[:, :, 2].T,
'vocals': separation[:, :, 3].T,
}
return estimates
print("separating...")
track_estimates_pairs = []
for i, track in enumerate(mus_test.tracks):
estimates = separate_sample(network, track)
track_estimates_pairs.append((track, estimates))
print(f"{int((i + 1) / len(mus_test.tracks) * 100)} %")
print("\nall tracks are separated, evaluation starts")
output_dir = f"checkpoints/{args.model_dir}/scores"
if not os.path.exists(output_dir): os.mkdir(output_dir)
def evaluate(track_estimates):
track, estimates = track_estimates
museval.eval_mus_track(track, estimates, output_dir=output_dir)
pool = multiprocessing.Pool(args.threads)
scores_list = list(
pool.imap_unordered(
func=evaluate,
iterable=track_estimates_pairs,
chunksize=1
)
)
pool.close()
pool.join()
print("Everything is evaluated")
def json2df(json_string, track_name):
df = json_normalize(json_string['targets'], ['frames'], ['name'])
df.columns = [col.replace('metrics.', '') for col in df.columns]
df = pd.melt(
df,
var_name='metric',
value_name='score',
id_vars=['time', 'name'],
value_vars=['SDR', 'SAR', 'ISR', 'SIR']
)
df['track'] = track_name
df = df.rename(index=str, columns={"name": "target"})
return df
scores = museval.EvalStore(frames_agg='median')
p = Path(output_dir)
json_paths = p.glob('test/**/*.json')
for json_path in json_paths:
with open(json_path) as json_file:
json_string = simplejson.loads(json_file.read())
track_df = json2df(json_string, json_path.stem)
scores.add_track(track_df)
print(scores)