forked from enarjord/passivbot
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmulti_symbol_optimize.py
237 lines (214 loc) · 10.7 KB
/
multi_symbol_optimize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import os
os.environ['NOJIT'] = 'false'
from downloader import Downloader
import argparse
import asyncio
import json
import hjson
import numpy as np
import traceback
from backtest import backtest
from multiprocessing import Pool
from pure_funcs import analyze_fills, pack_config, unpack_config, numpyize, denumpyize, config_pretty_str, \
get_template_live_config, candidate_to_live_config, ts_to_date, round_values
from procedures import add_argparse_args, prepare_optimize_config, load_live_config, make_get_filepath, \
load_exchange_key_secret, prepare_backtest_config, dump_live_config
from time import sleep, time
def backtest_single_wrap(config_: dict):
config = config_.copy()
exchange_name = config['exchange'] + ('_spot' if config['market_type'] == 'spot' else '')
cache_filepath = f"backtests/{exchange_name}/{config['symbol']}/caches/"
ticks_filepath = cache_filepath + f"{config['start_date']}_{config['end_date']}_ticks_cache.npy"
mss = json.load(open(cache_filepath + 'market_specific_settings.json'))
ticks = np.load(ticks_filepath)
config.update(mss)
try:
fills, stats = backtest(config, ticks)
fdf, sdf, analysis = analyze_fills(fills, stats, config)
pa_closeness_long = analysis['pa_closeness_mean_long']
pa_closeness_shrt = analysis['pa_closeness_mean_shrt']
adg = analysis['average_daily_gain']
print(f"backtested {config['symbol']: <12} pa closeness long {pa_closeness_long:.6f} "
f"pa closeness shrt {pa_closeness_shrt:.6f} adg {adg:.6f}")
except Exception as e:
print(f'error with {config["symbol"]} {e}')
print('config')
traceback.print_exc()
adg = 0.0
pa_closeness_long = pa_closeness_shrt = 100.0
with open(make_get_filepath('tmp/harmony_search_errors.txt'), 'a') as f:
f.write(json.dumps([time(), 'error', str(e), denumpyize(config)]) + '\n')
return (pa_closeness_long, pa_closeness_shrt, adg)
def backtest_multi_wrap(config: dict, pool):
tasks = {}
for s in sorted(config['symbols']):
tasks[s] = pool.apply_async(backtest_single_wrap, args=({**config, **{'symbol': s}},))
while True:
if all([task.ready() for task in tasks.values()]):
break
sleep(0.1)
results = {k: v.get() for k, v in tasks.items()}
pa_closeness_long_mean = np.mean([v[0] for v in results.values()])
pa_closeness_shrt_mean = np.mean([v[1] for v in results.values()])
adg_mean = np.mean([v[2] for v in results.values()])
if config['side'] == 'long':
score = adg_mean * min(1.0, config['maximum_pa_closeness_mean_long'] / pa_closeness_long_mean)
elif config['side'] == 'shrt':
score = adg_mean * min(1.0, config['maximum_pa_closeness_mean_shrt'] / pa_closeness_shrt_mean)
elif config['side'] == 'both':
score = adg_mean * min(1.0, (config['maximum_pa_closeness_mean_long'] / pa_closeness_long_mean + config['maximum_pa_closeness_mean_shrt'] / pa_closeness_shrt_mean) / 2)
print(f'pa closeness long {pa_closeness_long_mean:.6f} pa closeness shrt {pa_closeness_shrt_mean:.6f} adg {adg_mean:.6f} score {score:8f}')
return -score, results
def harmony_search(
func,
bounds: np.ndarray,
n_harmonies: int,
hm_considering_rate: float,
bandwidth: float,
pitch_adjusting_rate: float,
iters: int,
starting_xs: [np.ndarray] = [],
post_processing_func = None):
# hm == harmony memory
n_harmonies = max(n_harmonies, len(starting_xs))
seen = set()
hm = numpyize([[np.random.uniform(bounds[0][i], bounds[1][i]) for i in range(len(bounds[0]))] for _ in range(n_harmonies)])
for i in range(len(starting_xs)):
assert len(starting_xs[i]) == len(bounds[0])
harmony = np.array(starting_xs[i])
for z in range(len(bounds[0])):
harmony[z] = max(bounds[0][z], min(bounds[1][z], harmony[z]))
tpl = tuple(harmony)
if tpl not in seen:
hm[i] = harmony
seen.add(tpl)
print('evaluating initial harmonies...')
hm_evals = numpyize([func(h) for h in hm])
print('best harmony')
print(round_values(denumpyize(hm[hm_evals.argmin()]), 5), f'{hm_evals.min():.8f}')
if post_processing_func is not None:
post_processing_func(hm[hm_evals.argmin()])
print('starting search...')
worst_eval_i = hm_evals.argmax()
for itr in range(iters):
new_harmony = np.zeros(len(bounds[0]))
for note_i in range(len(bounds[0])):
if np.random.random() < hm_considering_rate:
new_note = hm[np.random.randint(0, len(hm))][note_i]
if np.random.random() < pitch_adjusting_rate:
new_note = new_note + bandwidth * (np.random.random() - 0.5) * abs(bounds[0][note_i] - bounds[1][note_i])
new_note = max(bounds[0][note_i], min(bounds[1][note_i], new_note))
else:
new_note = np.random.uniform(bounds[0][note_i], bounds[1][note_i])
new_harmony[note_i] = new_note
h_eval = func(new_harmony)
if h_eval < hm_evals[worst_eval_i]:
hm[worst_eval_i] = new_harmony
hm_evals[worst_eval_i] = h_eval
worst_eval_i = hm_evals.argmax()
print('improved harmony')
print(round_values(denumpyize(new_harmony), 5), f'{h_eval:.8f}')
print('best harmony')
print(round_values(denumpyize(hm[hm_evals.argmin()]), 5), f'{hm_evals.min():.8f}')
print('iteration', itr, 'of', iters)
if post_processing_func is not None:
post_processing_func(hm[hm_evals.argmin()])
return hm[hm_evals.argmin()]
class FuncWrap:
def __init__(self, pool, base_config):
self.pool = pool
self.base_config = base_config
self.xs_conf_map = [k for k in sorted(base_config['ranges'])]
self.bounds = numpyize([[self.base_config['ranges'][k][0] for k in self.xs_conf_map],
[self.base_config['ranges'][k][1] for k in self.xs_conf_map]])
self.now_date = ts_to_date(time())[:19].replace(':', '-')
self.test_symbol = base_config['symbols'][0]
self.results_fname = make_get_filepath(f'tmp/harmony_search_results_{self.test_symbol}_{self.now_date}.txt')
self.best_conf_fname = f'tmp/harmony_search_best_config_{self.test_symbol}_{self.now_date}.json'
def xs_to_config(self, xs):
config = unpack_config(self.base_config.copy())
for i, x in enumerate(xs):
config[self.xs_conf_map[i]] = x
return pack_config(config)
def config_to_xs(self, config):
unpacked = unpack_config(config)
return [unpacked[k] for k in self.xs_conf_map]
def func(self, xs):
config = self.xs_to_config(xs)
score, results = backtest_multi_wrap(config, self.pool)
with open(self.results_fname, 'a') as f:
f.write(json.dumps({'config': candidate_to_live_config(config), 'results': results}) + '\n')
return score
def post_processing_func(self, xs):
dump_live_config(self.xs_to_config(xs), self.best_conf_fname)
async def main():
parser = argparse.ArgumentParser(prog='Optimize multi symbol', description='Optimize passivbot config multi symbol')
parser.add_argument('-o', '--optimize_config', type=str, required=False, dest='optimize_config_path',
default='configs/optimize/multi_symbol.hjson', help='optimize config hjson file')
parser.add_argument('-t', '--start', type=str, required=False, dest='starting_configs',
default=None,
help='start with given live configs. single json file or dir with multiple json files')
parser.add_argument('-i', '--iters', type=int, required=False, dest='iters', default=None, help='n optimize iters')
parser = add_argparse_args(parser)
args = parser.parse_args()
args.symbol = 'BTCUSDT' # dummy symbol
config = await prepare_optimize_config(args)
config.update(get_template_live_config())
config['exchange'], _, _ = load_exchange_key_secret(config['user'])
config['long']['enabled'] = config['do_long']
config['shrt']['enabled'] = config['do_shrt']
if config['long']['enabled']:
if config['shrt']['enabled']:
print('optimizing both long and short')
config['side'] = 'both'
else:
print('optimizing long')
config['side'] = 'long'
elif config['shrt']['enabled']:
print('optimizing short')
config['side'] = 'shrt'
else:
raise Exception('long, shrt or both must be enabled')
# download ticks .npy file if missing
cache_fname = f"{config['start_date']}_{config['end_date']}_ticks_cache.npy"
exchange_name = config['exchange'] + ('_spot' if config['market_type'] == 'spot' else '')
for symbol in sorted(config['symbols']):
cache_dirpath = f"backtests/{exchange_name}/{symbol}/caches/"
if not os.path.exists(cache_dirpath + cache_fname) or not os.path.exists(cache_dirpath + 'market_specific_settings.json'):
print(f'fetching data {symbol}')
args.symbol = symbol
tmp_cfg = await prepare_backtest_config(args)
downloader = Downloader({**config, **tmp_cfg})
await downloader.get_sampled_ticks()
pool = Pool(processes=config['n_cpus'])
func_wrap = FuncWrap(pool, config)
cfgs = []
if args.starting_configs is not None:
if os.path.isdir(args.starting_configs):
cfgs = []
for fname in os.listdir(args.starting_configs):
try:
cfgs.append(load_live_config(os.path.join(args.starting_configs, fname)))
except Exception as e:
print('error loading config:', e)
elif os.path.exists(args.starting_configs):
try:
cfgs = [load_live_config(args.starting_configs)]
except Exception as e:
print('error loading config:', e)
starting_xs = [func_wrap.config_to_xs(cfg) for cfg in cfgs]
n_harmonies = config['n_harmonies']
hm_considering_rate = config['hm_considering_rate']
bandwidth = config['bandwidth']
pitch_adjusting_rate = config['pitch_adjusting_rate']
iters = config['iters']
best_harmony = harmony_search(func_wrap.func, func_wrap.bounds, n_harmonies,
hm_considering_rate, bandwidth, pitch_adjusting_rate, iters,
starting_xs=starting_xs,
post_processing_func=func_wrap.post_processing_func)
best_conf = func_wrap.xs_to_config(best_harmony)
print('best conf')
print(best_conf)
return
if __name__ == '__main__':
asyncio.run(main())