-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdeploy.py
395 lines (339 loc) · 14.1 KB
/
deploy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
import time
import numpy as np
import torch, os, json, copy
import shutil
import pdb
from tqdm import tqdm
from sinabs.from_torch import from_model
from sinabs.backend.dynapcnn.chip_factory import ChipFactory
from sinabs.backend.dynapcnn.dynapcnn_visualizer import DynapcnnVisualizer
from training.models.utils import convert_to_dynap
from training.models.retina import Retina
from training.models.blocks.lpf import LPFOnline
from training.loss import YoloLoss
from data.ini_30_module import get_ini_30_dataloader
from data.speck_processor import events_to_label, label_to_bbox
from figures.async_visualizer import AsyncGUI
from figures.plot_animation import plot_animation_points
class Evaluator:
def __init__(
self,
dvs_input=False,
chip_vs_local=False,
collect_eye_recording=False,
dynapcnn_device_str="speck2fmodule",
data_dir="../d_inivation_eye/",
steps_num=300,
path_to_run="./output/wandb/531-cool-sky",
):
self.dynapcnn_device_str = dynapcnn_device_str
self.training_params = json.load(
open(os.path.join(path_to_run, "training_params.json"), "r")
)
self.dataset_params = json.load(
open(os.path.join(path_to_run, "dataset_params.json"), "r")
)
self.layers_config = json.load(
open(os.path.join(path_to_run, "layer_configs.json"), "r")
)
self.path_to_gif = os.path.join(path_to_run, "test")
os.makedirs(self.path_to_gif, exist_ok=True)
input_shape = (
self.dataset_params["input_channel"],
self.dataset_params["img_width"],
self.dataset_params["img_height"],
)
# initialize model
self.training_params["train_with_mem"] = True
model = Retina(
self.dataset_params, self.training_params, self.layers_config
)
self.model = from_model(
model.seq,
add_spiking_output=True,
synops=True,
batch_size=self.training_params["batch_size"],
)
self.model_lpf = LPFOnline(
initial_scale=0.01,
device=torch.device("cpu"),
num_channels=self.training_params["output_dim"],
kernel_size=self.dataset_params["num_bins"],
train_scale=True,
)
self.model.spiking_model(
(
torch.ones(
(
self.dataset_params["num_bins"]
* self.training_params["batch_size"],
*input_shape,
)
)
).float()
)
# load weights
checkpoint = torch.load(
os.path.join(path_to_run, "models", f"step_{steps_num}.pt"),
map_location=torch.device("cpu"),
)
self.model.load_state_dict(checkpoint["model_state_dict"])
# dynap_cnn copies
self.dynapcnn_net = convert_to_dynap(
self.model.spiking_model, input_shape=input_shape, dvs_input=dvs_input
)
self.dynapcnn_net_local = copy.deepcopy(self.dynapcnn_net).to("cpu")
if chip_vs_local:
self.dynapcnn_net.to(dynapcnn_device_str, monitor_layers=["dvs", -1])
# init_visualizer
self.init_visualizer()
self.power_metrics = {
"io": [],
"ram": [],
"logic": [],
"pixel_digital": [],
"pixel_analog": [],
"total": [],
}
self.precision_metrics = {"local": [], "onchip": []}
if collect_eye_recording:
self.collect_eye_recording()
elif dvs_input:
self.eval_end_to_end()
elif chip_vs_local:
self.set_up_chip_evaluation(data_dir)
self.eval_chip_only()
else:
self.set_up_chip_evaluation(data_dir)
self.eval_model_only()
def set_up_chip_evaluation(
self, data_dir="/home/username/Desktop/pbl/d_inivation_eye/"
):
self.set_up_error()
self.test_loader = get_ini_30_dataloader(
data_dir,
dataset_params=self.dataset_params,
shuffle=False,
batch_size=self.training_params["batch_size"],
idxs=self.training_params["val_idxs"],
)
self.chip_factory = ChipFactory(self.dynapcnn_device_str)
def load_chip_recording(self, data_dir="data/speck_dataset/Sizhen/L/"):
onlyfiles = os.listdir(data_dir)
if "video.gif" in onlyfiles : onlyfiles.remove("video.gif")
if "video.mp4" in onlyfiles : onlyfiles.remove("video.mp4")
data = torch.zeros((len(onlyfiles), 2, 64, 64))
pdb.set_trace()
for i, file in enumerate(onlyfiles):
npy_chunk = np.load(os.path.join(data_dir, file), allow_pickle=True)
for e in npy_chunk:
data[i, e.feature, e.y, e.x] += 1
predictions_local = self.dynapcnn_net_local( data.flatten(end_dim=1).float() )
predictions_local = self.apply_lpf(predictions_local)
bbox_pred, conf_pred = label_to_bbox(predictions_local.detach())
for j in range(self.training_params["batch_size"]):
anim = plot_animation_points(data[j], bbox_pred[j], resize=False) :
anim.save(
os.path.join(self.path_to_gif, f"test_{i}_{j}.mp4"),
writer="ffmpeg",
)
def init_visualizer(self):
# Convert to Dynap
self.visualizer = DynapcnnVisualizer(
window_scale=(4, 8),
dvs_shape=(
self.dataset_params["img_width"],
self.dataset_params["img_height"],
),
add_power_monitor_plot=True,
power_monitor_number_of_items=5,
add_readout_plot=False,
)
# add 515 self.power_sink = samna.graph.sink_from(power_monitor.get_source_node())
def apply_lpf(self, predictions):
with torch.no_grad():
predictions = self.model_lpf(
predictions.reshape(
self.training_params["batch_size"],
self.training_params["output_dim"],
self.dataset_params["num_bins"],
)
).permute(0, 2, 1)
predictions = predictions.reshape(
self.training_params["batch_size"] * self.dataset_params["num_bins"],
self.training_params["output_dim"],
)
return predictions
def set_up_error(self):
self.error = YoloLoss(self.dataset_params, self.training_params)
def fill_power_metrics(self, power_measurements):
p_track_name = list(self.power_metrics.keys())
for p_track_id in range(5):
x = [
each.timestamp * 1e-3
for each in power_measurements
if each.channel == p_track_id
]
y = [
each.value * 1e3
for each in power_measurements
if each.channel == p_track_id
]
time_intervals = [x[i] - x[i - 1] for i in range(1, len(x))]
self.power_metrics[p_track_name[p_track_id]].append(
sum(power * delta_t for power, delta_t in zip(y, time_intervals))
)
def fill_precision_metrics(self, frames, predictions, labels):
predictions = self.apply_lpf(predictions)
self.error(predictions, labels)
self.precision_metrics["onchip"] = self.error.memory["distance"]
predictions_local = self.dynapcnn_net_local(frames.flatten(end_dim=1).float())[
: self.dataset_params["num_bins"]
]
predictions_local = self.apply_lpf(predictions_local)
self.error(predictions_local, labels)
self.precision_metrics["local"] = self.error.memory["distance"]
def eval_model_only(self):
iter_bar = tqdm(self.test_loader, desc="Iteration Loop")
for i, (frames, labels) in enumerate(iter_bar):
with torch.no_grad():
predictions_local = self.dynapcnn_net_local( frames.flatten(end_dim=1).float() )
predictions_local = self.apply_lpf(predictions_local)
self.error(predictions_local, labels)
self.precision_metrics["local"].append(self.error.memory["distance"])
bbox_pred, conf_pred = label_to_bbox(predictions_local.detach())
bbox_target, conf_target = label_to_bbox(
labels.flatten(end_dim=1).flatten(start_dim=1)
)
# bbox_pred = np.stack(bbox_pred).reshape(self.training_params["batch_size"], self.dataset_params["num_bins"], 4)
# bbox_target = np.stack(bbox_target).reshape(self.training_params["batch_size"], self.dataset_params["num_bins"], 4)
points_pred = (
bbox_pred[..., :2] + (bbox_pred[..., 2:] - bbox_pred[..., :2]) / 2
).reshape(
self.training_params["batch_size"],
self.dataset_params["num_bins"],
2,
)
points_target = (
bbox_target[..., :2]
+ (bbox_target[..., 2:] - bbox_target[..., :2]) / 2
).reshape(
self.training_params["batch_size"],
self.dataset_params["num_bins"],
2,
)
for j in range(self.training_params["batch_size"]):
# anim = plot_animation_boxes(frames[j], bbox_target[j], bbox_pred[j], resize=False)
anim = plot_animation_points(
frames[j], points_target[j], points_pred[j]
)
anim.save(
os.path.join(self.path_to_gif, f"test_{i}_{j}.mp4"),
writer="ffmpeg",
)
print("Test Distance :", np.mean(self.precision_metrics["local"]))
def eval_chip_only(self):
# chip (test dataset input)
# energy
# latency
# precision
iter_bar = tqdm(self.test_loader, desc="Iteration Loop")
for i, (frames, labels) in enumerate(iter_bar):
self.dynapcnn_net.reset_states()
# inputs
batch_test = 0
events = self.chip_factory.raster_to_events(
raster=frames[batch_test],
layer=0,
dt=1e-3,
truncate=False,
delay_factor=0,
)
input_timestamps = np.unique([e.timestamp for e in events])
# outputs
_ = self.visualizer.power_sink.get_events() # empty power sink
outputs = self.dynapcnn_net(events)
# power metrics
power_measurements = self.visualizer.power_sink.get_events()
self.fill_power_metrics(power_measurements)
# precision metrics
predictions = events_to_label(
outputs,
shape=[
self.dataset_params["num_bins"],
self.training_params["output_dim"],
],
)
self.fill_precision_metrics(frames, predictions, labels[: batch_test + 1])
# latency metrics
# TODO
# visualize
bbox, conf = label_to_bbox(predictions.detach())
self.async_gui.queue.put([events, bbox[-1], conf[-1].item()])
def eval_end_to_end(self):
self.visualizer.connect(self.dynapcnn_net)
self.visualizer.start()
self.async_gui = AsyncGUI()
self.async_gui.start(
args={
"plot_dt": 200,
"update_dt": 10,
"dvs_resolution": (
self.dataset_params["img_width"],
self.dataset_params["img_height"],
),
}
)
print("Now you should see the real-time power plot shows on the GUI window!")
duration = 0.01
while True:
time.sleep(duration)
out_events = self.visualizer.last_layer_buffer.get_events()
out_dvs_events = self.visualizer.custom_dvs_buffer.get_events()
if len(out_dvs_events) == 0:
print("No Events from the camera")
continue
if len(out_events) == 0:
print("No Events from the chip")
continue
print("\n ------------------------")
print("\n Number of events :", len(out_dvs_events))
print("\n Number of spikes output :", len(out_events))
predictions = events_to_label(
out_events,
shape=(
self.dataset_params["num_bins"],
self.training_params["output_dim"],
),
)
predictions = self.apply_lpf(predictions)
bbox_array, conf_array = label_to_bbox(predictions.detach())
print("\n BBOX coordinates :", bbox_array)
print("\n Confidence score :", conf_array)
self.async_gui.queue.put(
[out_dvs_events, bbox_array[0], conf_array[0].item()]
)
def collect_eye_recording(self):
self.visualizer.connect(self.dynapcnn_net)
self.visualizer.start()
print("Now you should see the real-time power plot shows on the GUI window!")
duration = 0.01
name = "Pietro"
eye = "R"
basedir = os.path.join("output", "speck-dataset", name, eye)
if os.path.exists(basedir) and os.path.isdir(basedir):
shutil.rmtree(basedir)
os.makedirs(basedir)
start = time.time()
while True:
ts = time.time() - start
out_dvs_events = self.visualizer.custom_dvs_buffer.get_events()
if len(out_dvs_events) > 150:
np.save(
os.path.join(basedir, f"{str(ts)}.npy"),
np.array(out_dvs_events, dtype=object),
allow_pickle=True,
)
time.sleep(duration)
if __name__ == "__main__":
evaluate = Evaluator(dvs_input=False, chip_vs_local=True, collect_eye_recording=False)