-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpbalapra-bibtex.html
1750 lines (1439 loc) · 59.8 KB
/
pbalapra-bibtex.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<table>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="KhaBal2020b">1</a>]
</td>
<td class="bibtexitem" align="justify">
S. Khairy and P. Balaprakash.
Challenges and opportunities for ai-enabled science applications over
5g.
In <em>5G Enabled Energy Innovation Workshop (5GEEIW)</em>, March 2020.
[ <a href="pbalapra-bibtex_bib.html#KhaBal2020b">bib</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="KhaBal2020a">2</a>]
</td>
<td class="bibtexitem" align="justify">
S. Khairy and P. Balaprakash.
Edge intelligence meets cloud intelligence over 5g: Unmanned aerial
vehicle swarm for extremeenvironments.
In <em>5G Enabled Energy Innovation Workshop (5GEEIW)</em>, March 2020.
[ <a href="pbalapra-bibtex_bib.html#KhaBal2020a">bib</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="osti_1606538">3</a>]
</td>
<td class="bibtexitem" align="justify">
P. Beckman, C. Catlett, M. Ahmed, M. Alawad, L. Bai, P. Balaprakash, K. Barker,
P. Beckman, R. Berry, A. Bhuyan, G. Brebner, K. Burkes, A. Butko,
F. Cappello, R. Chard, S. Collis, J. Cree, D. Dasgupta, A. Evdokimov, J. M.
Fields, P. Fuhr, C. Harper, Y. Jin, R. Kettimuthu, M. Kiran, R. Kozma, P. A.
Kumar, Y. Kumar, L. Luo, L. Mashayekhy, I. Monga, B. Nickless, T. Pappas,
E. Peterson, T. Pfeffer, S. Rakheja, V. R. Tribaldos, S. Rooke, S. Roy,
T. Saadawi, A. Sandy, R. Sankaran, N. Schwarz, S. Somnath, M. Stan,
C. Stuart, R. Sullivan, A. Sumant, G. Tchilinguirian, N. Tran, A. Veeramany,
A. Wang, B. Wang, A. Wiedlea, S. Wielandt, T. Windus, Y. Wu, X. Yang, Z. Yao,
R. Yu, Y. Zeng, and Y. Zhang.
5g enabled energy innovation: Advanced wireless networks for science,
workshop report.
2020.
[ <a href="pbalapra-bibtex_bib.html#osti_1606538">bib</a> |
<a href="http://dx.doi.org/10.2172/1606538">DOI</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="HeMicro2020">4</a>]
</td>
<td class="bibtexitem" align="justify">
Y. He, P. Balaprakash, and Y. Li.
FIdelity: Efficient Resilience Analysis Framework for Deep Learning
Accelerators.
In <em>53rd IEEE/ACM International Symposium on Microarchitecture
(MICRO)</em>, 2020.
[ <a href="pbalapra-bibtex_bib.html#HeMicro2020">bib</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="madireddy2020multilayer">5</a>]
</td>
<td class="bibtexitem" align="justify">
S. Madireddy, A. Yanguas-Gil, and P. Balaprakash.
Multilayer neuromodulated architectures for memory-constrained online
continual learning.
In <em>ICML Workshop on LifelongML</em>, 2020.
[ <a href="pbalapra-bibtex_bib.html#madireddy2020multilayer">bib</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="MallickTRB2020">6</a>]
</td>
<td class="bibtexitem" align="justify">
T. Mallick, P. Balaprakash, E. Rask, and J. Macfarlane.
Graph-partitioning-based diffusion convolutional recurrent neural
network for large-scale traffic forecasting.
<em>Transportation Research Record</em>, 2020.
[ <a href="pbalapra-bibtex_bib.html#MallickTRB2020">bib</a> ]
<blockquote><font size="-1">
Traffic forecasting approaches are critical to developing adaptive strategies for mobility. Traffic patterns have complex spatial and temporal dependencies that make accurate forecasting on large highway networks a challenging task. Recently, diffusion convolutional recurrent neural networks (DCRNNs) have achieved state-of-the-art results in traffic forecasting by capturing the spatiotemporal dynamics of the traffic. Despite the promising results, however, applying DCRNNs for large highway networks still remains elusive because of computational and memory bottlenecks. This paper presents an approach for implementing a DCRNN for a large highway network that overcomes these limitations. This approach uses a graph-partitioning method to decompose a large highway network into smaller networks and trains them independently. The efficacy of the graph-partitioning-based DCRNN approach to model the traffic on a large California highway network with 11,160 sensor locations is demonstrated. An overlapping-nodes approach for the graph-partitioning-based DCRNN is developed to include sensor locations from partitions that are geographically close to a given partition. Furthermore, it is demonstrated that the DCRNN model can be used to forecast the speed and flow simultaneously and that the forecasted values preserve fundamental traffic flow dynamics. This approach to developing DCRNN models that represent large highway networks can be a potential core capability in advanced highway traffic monitoring systems, where a trained DCRNN model forecasting traffic at all sensor locations can be used to adjust traffic management strategies proactively based on anticipated future conditions.
</font></blockquote>
<p>
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="maulik2020neural">7</a>]
</td>
<td class="bibtexitem" align="justify">
R. Maulik, N. A. Garland, J. W. Burby, X.-Z. Tang, and P. Balaprakash.
Neural network representability of fully ionized plasma fluid model
closures.
<em>Physics of Plasmas</em>, 27(7):072106, 2020.
[ <a href="pbalapra-bibtex_bib.html#maulik2020neural">bib</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="Maulik2020NonautoregressiveTM">8</a>]
</td>
<td class="bibtexitem" align="justify">
R. Maulik, B. Lusch, and P. Balaprakash.
Non-autoregressive time-series methods for stable parametric
reduced-order models.
<em>Physics of Fluids</em>, 32(8), 2020.
[ <a href="pbalapra-bibtex_bib.html#Maulik2020NonautoregressiveTM">bib</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="KhaAAAI2020">9</a>]
</td>
<td class="bibtexitem" align="justify">
S. Khairy, R. Shaydulin, L. Cincio, Y. Alexeev, and P. Balaprakash.
Learning to optimize variational quantum circuits to solve
combinatorial problems.
In <em>AAAI Conference on Artificial Intelligence</em>, 2020.
[ <a href="pbalapra-bibtex_bib.html#KhaAAAI2020">bib</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="KhaJSAC2020">10</a>]
</td>
<td class="bibtexitem" align="justify">
S. Khairy, P. Balaprakash, L. X. Cai, and Y. Cheng.
Constrained deep reinforcement learning for energy sustainable
multi-uav based random access IoT networks with NOMA.
<em>IEEE Journal on Selected Areas in Communications</em>, 2020.
[ <a href="pbalapra-bibtex_bib.html#KhaJSAC2020">bib</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="IsaSC2020">11</a>]
</td>
<td class="bibtexitem" align="justify">
M. Isakov, E. Rosario, S. Madireddy, P. Balaprakash, P. Carns, R. Ross, and
M. Kinsy.
HPC I/O throughput bottleneck analysis with explainable local
models.
In <em>SC '20: IEEE/ACM International Conference on High Performance
Computing, Networking, Storage and Analysis</em>, 2020.
[ <a href="pbalapra-bibtex_bib.html#IsaSC2020">bib</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="MauSC2020">12</a>]
</td>
<td class="bibtexitem" align="justify">
R. Maulik, R. Egele, B. Lusch, and P. Balaprakash.
Recurrent neural network architecture search for geophysical
emulation.
In <em>SC '20: IEEE/ACM International Conference on High Performance
Computing, Networking, Storage and Analysis</em>, 2020.
[ <a href="pbalapra-bibtex_bib.html#MauSC2020">bib</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="maulik2019using">13</a>]
</td>
<td class="bibtexitem" align="justify">
R. Maulik, V. Rao, S. Madireddy, B. Lusch, and P. Balaprakash.
Using recurrent neural networks for nonlinear component computation
in advection-dominated reduced-order models.
In <em>NeurIPS Workshop on ML and the Physical Sciences</em>, 2019.
[ <a href="pbalapra-bibtex_bib.html#maulik2019using">bib</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="maulik2019site">14</a>]
</td>
<td class="bibtexitem" align="justify">
R. Maulik and P. Balaprakash.
Site-specific graph neural network for predicting protonation energy
of oxygenate molecules.
In <em>NeurIPS Workshop on ML and the Physical Sciences</em>, 2019.
[ <a href="pbalapra-bibtex_bib.html#maulik2019site">bib</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="madireddy2019modular">15</a>]
</td>
<td class="bibtexitem" align="justify">
S. Madireddy, N. Li, N. Ramachandra, P. Balaprakash, and S. Habib.
Modular deep learning analysis of galaxy-scale strong lensing images.
In <em>NeurIPS Workshop on ML and the Physical Sciences</em>, 2019.
[ <a href="pbalapra-bibtex_bib.html#madireddy2019modular">bib</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="jiang2019value">16</a>]
</td>
<td class="bibtexitem" align="justify">
P. Jiang, H. Doan, S. Madireddy, R. S. Assary, and P. Balaprakash.
Value-added chemical discovery using reinforcement learning.
In <em>NeurIPS Workshop on ML and the Physical Sciences</em>, 2019.
[ <a href="pbalapra-bibtex_bib.html#jiang2019value">bib</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="khairy2019reinforcement">17</a>]
</td>
<td class="bibtexitem" align="justify">
S. Khairy, R. Shaydulin, L. Cincio, Y. Alexeev, and P. Balaprakash.
Reinforcement-learning-based variational quantum circuits
optimization for combinatorial problems.
In <em>NeurIPS Workshop on ML and the Physical Sciences</em>, 2019.
[ <a href="pbalapra-bibtex_bib.html#khairy2019reinforcement">bib</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="Maulik2019TimeseriesLO">18</a>]
</td>
<td class="bibtexitem" align="justify">
R. Maulik, A. Mohan, B. Lusch, S. Madireddy, P. Balaprakash, and D. Livescu.
Time-series learning of latent-space dynamics for reduced-order model
closure.
<em>Physica D: Nonlinear Phenomena</em>, 405, 2019.
[ <a href="pbalapra-bibtex_bib.html#Maulik2019TimeseriesLO">bib</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="madireddy2019phase">19</a>]
</td>
<td class="bibtexitem" align="justify">
S. Madireddy, D.-W. Chung, T. Loeffler, S. K. Sankaranarayanan, D. N. Seidman,
P. Balaprakash, and O. Heinonen.
Phase segmentation in atom-probe tomography using deep learning-based
edge detection.
<em>Scientific reports</em>, 9(1):1–10, 2019.
[ <a href="pbalapra-bibtex_bib.html#madireddy2019phase">bib</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="lee2019improving">20</a>]
</td>
<td class="bibtexitem" align="justify">
S. Lee, Q. Kang, S. Madireddy, P. Balaprakash, A. Agrawal, A. Choudhary,
R. Archibald, and W.-k. Liao.
Improving scalability of parallel cnn training by adjusting
mini-batch size at run-time.
In <em>2019 IEEE International Conference on Big Data (Big Data)</em>,
pages 830–839. IEEE, 2019.
[ <a href="pbalapra-bibtex_bib.html#lee2019improving">bib</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="BalSC2019">21</a>]
</td>
<td class="bibtexitem" align="justify">
P. Balaprakash, R. Egele, M. Salim, S. Wild, V. Vishwanath, F. Xia, T. Brettin,
and R. Stevens.
Scalable reinforcement-learning-based neural architecture search for
cancer deep learning research.
In <em>SC '19: IEEE/ACM International Conference on High Performance
Computing, Networking, Storage and Analysis</em>, 2019.
[ <a href="pbalapra-bibtex_bib.html#BalSC2019">bib</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="gmd-2019-79">22</a>]
</td>
<td class="bibtexitem" align="justify">
J. Wang, P. Balaprakash, and R. Kotamarthi.
Fast domain-aware neural network emulation of a planetary boundary
layer parameterization in a numerical weather forecast model.
<em>Geoscientific Model Development</em>, 2019:1–31, 2019.
[ <a href="pbalapra-bibtex_bib.html#gmd-2019-79">bib</a> |
<a href="http://dx.doi.org/10.5194/gmd-2019-79">DOI</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="wycoff2019neuromorphic">23</a>]
</td>
<td class="bibtexitem" align="justify">
N. Wycoff, P. Balaprakash, and F. Xia.
Neuromorphic acceleration for approximate bayesian inference on
neural networks via permanent dropout.
In <em>International Conference on Neuromorphic Computing</em>, 2019.
[ <a href="pbalapra-bibtex_bib.html#wycoff2019neuromorphic">bib</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="madireddy2019neuromorphic">24</a>]
</td>
<td class="bibtexitem" align="justify">
S. Madireddy, A. Yanguas-Gil, and P. Balaprakash.
Neuromorphic architecture optimization for task-specific dynamic
learning.
In <em>International Conference on Neuromorphic Computing</em>, 2019.
[ <a href="pbalapra-bibtex_bib.html#madireddy2019neuromorphic">bib</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="Aithal2019">25</a>]
</td>
<td class="bibtexitem" align="justify">
S. M. Aithal and P. Balaprakash.
MaLTESE: Large-Scale Simulation-Driven Machine Learning for
Transient Driving Cycles.
In M. Weiland, G. Juckeland, C. Trinitis, and P. Sadayappan, editors,
<em>High Performance Computing</em>, pages 186–205. Springer International
Publishing, 2019.
[ <a href="pbalapra-bibtex_bib.html#Aithal2019">bib</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="kimgraph2019">26</a>]
</td>
<td class="bibtexitem" align="justify">
C. Kim, K. Kim, P. Balaprakash, and M. Anitescu.
Graph convolutional neural networks for optimal load shedding under
line contingency.
In <em>IEEE Power & Energy Society General Meeting (PESGM)</em>, 2019.
[ <a href="pbalapra-bibtex_bib.html#kimgraph2019">bib</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="MadireddyICPP2019">27</a>]
</td>
<td class="bibtexitem" align="justify">
S. Madireddy, P. Balaprakash, P. Carns, R. Latham, G. K. Lockwood, R. Ross,
S. Snyder, and S. M. Wild.
Adaptive learning for concept drift in application performance
modeling.
In <em>Proceedings of the 48th International Conference on Parallel
Processing</em>, ICPP 2019, pages 79:1–79:11, New York, NY, USA, 2019. ACM.
[ <a href="pbalapra-bibtex_bib.html#MadireddyICPP2019">bib</a> |
<a href="http://dx.doi.org/10.1145/3337821.3337922">DOI</a> |
<a href="http://doi.acm.org/10.1145/3337821.3337922">http</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="Sre2019">28</a>]
</td>
<td class="bibtexitem" align="justify">
V. Sreenivasan, R. Javali, M. Hall, P. Balaprakash, T. R. W. Scogland, and
B. R. de Supinski.
A framework for enabling openmp autotuning.
In X. Fan, B. R. de Supinski, O. Sinnen, and N. Giacaman, editors,
<em>OpenMP: Conquering the Full Hardware Spectrum</em>, pages 50–60. Springer
International Publishing, 2019.
[ <a href="pbalapra-bibtex_bib.html#Sre2019">bib</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="WozBMC18">29</a>]
</td>
<td class="bibtexitem" align="justify">
J. M. Wozniak, R. Jain, P. Balaprakash, J. Ozik, N. T. Collier, J. Bauer,
F. Xia, T. S. Brettin, R. Stevens, J. Mohd-Yusof, C. Garcia-Cardona,
B. V. Essen, and M. Baughman.
Candle/supervisor: a workflow framework for machine learning applied
to cancer research.
<em>BMC Bioinformatics</em>, 19-S(18):59–69, 2018.
[ <a href="pbalapra-bibtex_bib.html#WozBMC18">bib</a> |
<a href="http://dx.doi.org/10.1186/s12859-018-2508-4">DOI</a> |
<a href="https://doi.org/10.1186/s12859-018-2508-4">http</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="LiuKetBalFos2018">30</a>]
</td>
<td class="bibtexitem" align="justify">
Z. Liu, R. Kettimuthu, P. Balaprakash, and I. Foster.
Building a wide-area data transfer performance predictor: An
empirical study.
In <em>the 1st International Conference on Machine Learning for
Networking</em>, MLN 2018. Springer, 2018.
[ <a href="pbalapra-bibtex_bib.html#LiuKetBalFos2018">bib</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="Madireddy_cluster2018">31</a>]
</td>
<td class="bibtexitem" align="justify">
S. Madireddy, P. Balaprakash, P. Carns, R. Latham, R. Ross, S. Snyder, and
S. M. Wild.
Modeling I/O performance variability using conditional variational
autoencoders.
In <em>2018 IEEE International Conference on Cluster Computing
(CLUSTER)</em>, 2018.
[ <a href="pbalapra-bibtex_bib.html#Madireddy_cluster2018">bib</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="Madireddy_pdsw2018">32</a>]
</td>
<td class="bibtexitem" align="justify">
S. Madireddy, P. Balaprakash, P. Carns, R. Latham, G. K. Lockwood, R. Ross,
S. Snyder, and S. M. Wild.
Online change point detection and adaptive predictive modeling of
I/O performance.
In <em>In Review</em>, 2018.
[ <a href="pbalapra-bibtex_bib.html#Madireddy_pdsw2018">bib</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="MalBalVis2018">33</a>]
</td>
<td class="bibtexitem" align="justify">
P. Malakar, P. Balaprakash, V. Vishwanath, V. Morozov, and K. Kumaran.
Benchmarking machine learning methods for performance modeling of
scientific applications.
In <em>PMBS 2018: Performance Modeling, Benchmarking and
Simulation of High Performance Computer Systems (held in conjunction with
SC18)</em>, 2018.
[ <a href="pbalapra-bibtex_bib.html#MalBalVis2018">bib</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="BalLarWil2018">34</a>]
</td>
<td class="bibtexitem" align="justify">
P. Balaprakash, J. Larson, V. Vishwanath, and S. Wild.
Derivative-free mixed-integer optimization for automated predictive
modeling using machine learning.
In <em>SciML 2018: DOE ASCR Scientific Machine Learning Workshop</em>,
2018.
[ <a href="pbalapra-bibtex_bib.html#BalLarWil2018">bib</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="SalUraChil2018">35</a>]
</td>
<td class="bibtexitem" align="justify">
M. Salim, T. Uram, J. Childers, P. Balaprakash, V. Vishwanath, and M. Papka.
Balsam: Automated scheduling and execution of dynamic, data-intensive
HPC workflows.
In <em>Python for High-Performance and Scientific Computing (held in
conjunction with SC18)</em>, 2018.
[ <a href="pbalapra-bibtex_bib.html#SalUraChil2018">bib</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="LeeAgrBal2018">36</a>]
</td>
<td class="bibtexitem" align="justify">
S. Lee, A. Agrawal, P. Balaprakash, A. Choudhary, and W. Liao.
Communication-efficient parallelization strategy for deep
convolutional neural network training.
In <em>Machine Learning in HPC (held in conjunction with SC18)</em>,
2018.
[ <a href="pbalapra-bibtex_bib.html#LeeAgrBal2018">bib</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="MadBalCar2018">37</a>]
</td>
<td class="bibtexitem" align="justify">
S. Madireddy, P. Balaprakash, P. Carns, R. Latham, R. Ross, S. Snyder, and
S. M. Wild.
Machine learning based parallel I/O predictive modeling: A case
study on Lustre file systems.
In <em>High Performance Computing</em>, pages 184–204. Springer
International Publishing, 2018.
[ <a href="pbalapra-bibtex_bib.html#MadBalCar2018">bib</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="SUBASI2018277">38</a>]
</td>
<td class="bibtexitem" align="justify">
O. Subasi, S. Di, L. Bautista-Gomez, P. Balaprakash, O. Unsal, J. Labarta,
A. Cristal, S. Krishnamoorthy, and F. Cappello.
Exploring the capabilities of support vector machines in detecting
silent data corruptions.
<em>Sustainable Computing: Informatics and Systems</em>, 19:277 – 290,
2018.
[ <a href="pbalapra-bibtex_bib.html#SUBASI2018277">bib</a> |
<a href="https://doi.org/10.1016/j.suscom.2018.01.004">DOI</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="BalSalUra2018">39</a>]
</td>
<td class="bibtexitem" align="justify">
P. Balaprakash, M. Salim, T. Uram, V. Vishwanath, and S. M. Wild.
DeepHyper: Asynchronous Hyperparameter Search for Deep Neural
Networks.
In <em>25th IEEE International Conference on High Performance
Computing, Data, and Analytics</em>. IEEE, 2018.
[ <a href="pbalapra-bibtex_bib.html#BalSalUra2018">bib</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="BalDonGamHall2018">40</a>]
</td>
<td class="bibtexitem" align="justify">
P. Balaprakash, J. Dongarra, T. Gamblin, M. Hall, J. K. Hollingsworth,
B. Norris, and R. Vuduc.
Autotuning in high-performance computing applications.
<em>Proceedings of the IEEE</em>, pages 1–16, 2018.
[ <a href="pbalapra-bibtex_bib.html#BalDonGamHall2018">bib</a> |
<a href="http://dx.doi.org/10.1109/JPROC.2018.2841200">DOI</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="Foster2017">41</a>]
</td>
<td class="bibtexitem" align="justify">
I. Foster, T. Lehman, N. Rao, B. Lyles, P. Balaprakash, K. Perumalla,
S. Prowell, and R. Vatsavi.
Towards new generation intelligent networking infrastructure for
distributed science environments.
Technical report, DOE ASCR Workshop Report, 2017.
[ <a href="pbalapra-bibtex_bib.html#Foster2017">bib</a> |
<a href="https://www.orau.gov/smarthp2016/Final-report.pdf">.pdf</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="MamBalCho2017">42</a>]
</td>
<td class="bibtexitem" align="justify">
A. Mametjanov, P. Balaprakash, C. Choudary, P. D. Hovland, S. M. Wild,
G. Sabin, and G. Wolfe.
Improving FPGA design parameter exploration: Timing, power, and
area.
2017.
[ <a href="pbalapra-bibtex_bib.html#MamBalCho2017">bib</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="ChuBalMorVisKum2017">43</a>]
</td>
<td class="bibtexitem" align="justify">
S. Chunduri, P. Balaprakash, V. Morozov, V. Vishwanath, and K. Kumaran.
Analytical performance modeling and validation of intel's xeon phi
architecture.
In <em>Proceedings of the Computing Frontiers Conference</em>, CF'17,
pages 247–250, New York, NY, USA, 2017. ACM.
[ <a href="pbalapra-bibtex_bib.html#ChuBalMorVisKum2017">bib</a> |
<a href="http://dx.doi.org/10.1145/3075564.3075593">DOI</a> |
<a href="http://doi.acm.org/10.1145/3075564.3075593">http</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="LiuBalKetFos2017">44</a>]
</td>
<td class="bibtexitem" align="justify">
Z. Liu, P. Balaprakash, R. Kettimuthu, and I. Foster.
Explaining wide area data transfer performance.
In <em>Proceedings of the 26th International Symposium on
High-Performance Parallel and Distributed Computing</em>, HPDC '17, pages
167–178, New York, NY, USA, 2017. ACM.
Acceptance rate 19%.
[ <a href="pbalapra-bibtex_bib.html#LiuBalKetFos2017">bib</a> |
<a href="http://dx.doi.org/10.1145/3078597.3078605">DOI</a> |
<a href="http://doi.acm.org/10.1145/3078597.3078605">http</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="MadiBalCarLatRossSnyWil2017">45</a>]
</td>
<td class="bibtexitem" align="justify">
S. Madireddy, P. Balaprakash, P. Carns, R. Latham, R. Ross, S. Snyder, and
S. M. Wild.
Analysis and correlation of application I/O performance and
system-wide I/O activity.
In <em>2017 International Conference on Networking, Architecture,
and Storage (NAS)</em>, pages 1–10, Aug 2017.
Acceptance rate 33%.
[ <a href="pbalapra-bibtex_bib.html#MadiBalCarLatRossSnyWil2017">bib</a> |
<a href="http://dx.doi.org/10.1109/NAS.2017.8026844">DOI</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="MadiBalCarLat2017">46</a>]
</td>
<td class="bibtexitem" align="justify">
S. Madireddy, P. Balaprakash, P. Carns, R. Latham, R. Ross, S. Snyder, and
S. Wild.
Modeling application I/O performance variability: A probabilistic
graphical model approach, 2017.
[ <a href="pbalapra-bibtex_bib.html#MadiBalCarLat2017">bib</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="SubDiBal2017">47</a>]
</td>
<td class="bibtexitem" align="justify">
O. Subasi, S. Di, P. Balaprakash, O. Unsal, J. Labarta, A. Cristal,
S. Krishnamoorthy, and F. Cappello.
MACORD: online adaptive machine learning framework for silent error
detection.
In <em>In 3rd Workshop on Fault Tolerance Systems (FTS'17)</em>, 2017.
[ <a href="pbalapra-bibtex_bib.html#SubDiBal2017">bib</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="MunBal2017">48</a>]
</td>
<td class="bibtexitem" align="justify">
T. Munson and P. Balaprakash.
Dynamic Adversarial Games in Complex Systems and Machine Learning.
8 2017.
[ <a href="pbalapra-bibtex_bib.html#MunBal2017">bib</a> |
<a href="http://dx.doi.org/10.6084/m9.figshare.5334208.v1">DOI</a> |
<a href="https://figshare.com/articles/Dynamic_Adversarial_Games_in_Complex_Systems_and_Machine_Learning/5334208">http</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="RoyBalHovWil2016">49</a>]
</td>
<td class="bibtexitem" align="justify">
A. Roy, P. Balaprakash, P. D. Hovland, and S. M. Wild.
Exploiting performance portability in search algorithms for
autotuning.
In <em>2016 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW)</em>, pages 1535–1544, 2016.
[ <a href="pbalapra-bibtex_bib.html#RoyBalHovWil2016">bib</a> |
<a href="http://dx.doi.org/10.1109/IPDPSW.2016.85">DOI</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="MoaBalRouWil2016">50</a>]
</td>
<td class="bibtexitem" align="justify">
A. Moawad, P. Balaprakash, A. Rousseau, and S. M. Wild.
Novel large scale simulation process to support DOT's CAFE
modeling system.
<em>International Journal of Automotive Technology</em>,
17(6):1067–1077, 2016.
[ <a href="pbalapra-bibtex_bib.html#MoaBalRouWil2016">bib</a> |
<a href="http://dx.doi.org/10.1007/s12239-016-0104-z">DOI</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="BalTiwWilHov2016">51</a>]
</td>
<td class="bibtexitem" align="justify">
P. Balaprakash, A. Tiwari, S. M. Wild, and P. D. Hovland.
AutoMOMML: Automatic Multi-objective Modeling with Machine
Learning.
In M. J. Kunkel, P. Balaji, and J. Dongarra, editors, <em>High
Performance Computing: 31st International Conference, ISC High Performance
2016, Frankfurt, Germany, June 19-23, 2016, Proceedings</em>, pages 219–239.
Springer International Publishing, 2016.
[ <a href="pbalapra-bibtex_bib.html#BalTiwWilHov2016">bib</a> |
<a href="http://dx.doi.org/10.1007/978-3-319-41321-1_12">DOI</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="BalMorKetKumFos2016">52</a>]
</td>
<td class="bibtexitem" align="justify">
P. Balaprakash, V. Morozov, R. Kettimuthu, K. Kumaran, and I. Foster.
Improving data transfer throughput with direct search optimization.
In <em>2016 45th International Conference on Parallel Processing
(ICPP)</em>, pages 248–257, 2016.
Acceptance rate 21.10%.
[ <a href="pbalapra-bibtex_bib.html#BalMorKetKumFos2016">bib</a> |
<a href="http://dx.doi.org/10.1109/ICPP.2016.36">DOI</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="SubDiBauBal2016">53</a>]
</td>
<td class="bibtexitem" align="justify">
O. Subasi, S. Di, L. Bautista-Gomez, P. Balaprakash, O. Unsal, J. Labarta,
A. Cristal, and F. Cappello.
Spatial support vector regression to detect silent errors in the
exascale era.
In <em>2016 16th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGrid)</em>, pages 413–424, 2016.
Acceptance rate 20.0%.
[ <a href="pbalapra-bibtex_bib.html#SubDiBauBal2016">bib</a> |
<a href="http://dx.doi.org/10.1109/CCGrid.2016.33">DOI</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="berry2015ml">54</a>]
</td>
<td class="bibtexitem" align="justify">
M. Berry, T. E. Potok, P. Balaprakash, H. Hoffmann, R. Vatsavai, and Prabhat.
Machine learning and understanding for intelligent extreme scale
scientific computing and discovery.
Technical report, DOE ASCR Workshop Report, 2015.
[ <a href="pbalapra-bibtex_bib.html#berry2015ml">bib</a> |
<a href="http://science.energy.gov/~/media/ascr/pdf/program-documents/docs/Machine_Learning_DOE_Workshop_Report.pdf">.pdf</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="BalBirSto15">55</a>]
</td>
<td class="bibtexitem" align="justify">
P. Balaprakash, M. Birattari, T. Stützle, and M. Dorigo.
Estimation-based metaheuristics for the single vehicle routing
problem with stochastic demands and customers.
<em>Computational Optimization and Applications</em>, 61(2):463–487,
2015.
[ <a href="pbalapra-bibtex_bib.html#BalBirSto15">bib</a> |
<a href="http://dx.doi.org/10.1007/s10589-014-9719-z">DOI</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="MamBalCho2015">56</a>]
</td>
<td class="bibtexitem" align="justify">
A. Mametjanov, P. Balaprakash, C. Choudary, P. D. Hovland, S. M. Wild, and
G. Sabin.
Autotuning FPGA design parameters for performance and power.
In <em>2015 IEEE 23rd Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM)</em>, pages 84–91, 2015.
Acceptance rate 22.10%.
[ <a href="pbalapra-bibtex_bib.html#MamBalCho2015">bib</a> |
<a href="http://dx.doi.org/10.1109/FCCM.2015.54">DOI</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="BalGomBou15">57</a>]
</td>
<td class="bibtexitem" align="justify">
P. Balaprakash, L. A. B. Gomez, M. S. Bouguerra, S. M. Wild, F. Cappello, and
P. D. Hovland.
Analysis of the tradeoffs between energy and run time for multilevel
checkpointing.
In S. A. Jarvis, S. A. Wright, and S. D. Hammond, editors, <em>High
Performance Computing Systems. Performance Modeling, Benchmarking, and
Simulation – PMBS 2014</em>, volume 8966 of <em>Lecture Notes in Computer
Science</em>, pages 249–263. Springer International Publishing, 2015.
Acceptance rate 26%.
[ <a href="pbalapra-bibtex_bib.html#BalGomBou15">bib</a> |
<a href="http://dx.doi.org/10.1007/978-3-319-17248-4_13">DOI</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="NelRivBal2015">58</a>]
</td>
<td class="bibtexitem" align="justify">
T. Nelson, A. Rivera, P. Balaprakash, M. Hall, P. D. Hovland, E. Jessup, and
B. Norris.
Generating efficient tensor contractions for GPUs.
In <em>2015 44th International Conference on Parallel Processing
(ICPP)</em>, pages 969–978, 2015.
Acceptance rate 32.5%.
[ <a href="pbalapra-bibtex_bib.html#NelRivBal2015">bib</a> |
<a href="http://dx.doi.org/10.1109/ICPP.2015.106">DOI</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="BalAleMic15">59</a>]
</td>
<td class="bibtexitem" align="justify">
P. Balaprakash, Y. Alexeev, S. A. Mickelson, S. Leyffer, R. Jacob, and
A. Craig.
Machine-learning-based load balancing for community ice code
component in CESM.
In M. Daydé, O. Marques, and K. Nakajima, editors, <em>High
Performance Computing for Computational Science – VECPAR 2014, Revised
Selected Papers</em>, volume 8969 of <em>Lecture Notes in Computer Science</em>,
pages 79–91. Springer International Publishing, 2015.
[ <a href="pbalapra-bibtex_bib.html#BalAleMic15">bib</a> |
<a href="http://dx.doi.org/10.1007/978-3-319-17353-5_7">DOI</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="IsaBalWil2015">60</a>]
</td>
<td class="bibtexitem" align="justify">
F. Isaila, P. Balaprakash, S. M. Wild, D. Kimpe, R. Latham, R. Ross, and P. D.
Hovland.
Collective I/O tuning using analytical and machine learning models.
In <em>2015 IEEE International Conference on Cluster Computing
(CLUSTER)</em>, pages 128–137. IEEE, 2015.
Acceptance rate 24%.
[ <a href="pbalapra-bibtex_bib.html#IsaBalWil2015">bib</a> |
<a href="http://dx.doi.org/10.1109/CLUSTER.2015.29">DOI</a> ]