-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathnew_mp_utils.py
277 lines (234 loc) · 8.87 KB
/
new_mp_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import numpy as np
import random
from scipy.spatial import distance_matrix
def create_tour(N):
"""
Create an initial tour for the TSP
:param int tour_length: Tour length
:param bool rand: Generate random tour
:return: list with a TSP tour
"""
tour = random.sample(range(N), N)
return list(tour)
def calculate_distances(positions):
"""
Calculate a all distances between poistions
:param np.array positions: Positions of (tour_len, 2) points
:return: list with all distances
"""
# def length(x, y):
# return np.linalg.norm(np.asarray(x) - np.asarray(y))
# distances = [[length(x, y) for y in positions] for x in positions]
distances = distance_matrix(positions, positions)
return distances
def route_distance(tour, distances):
"""
Calculate a tour distance (including 0)
:param list tour: TSP tour
:param list : list with all distances
:return dist: Distance of a tour
"""
dist = 0
prev = tour[-1]
for node in tour:
dist += distances[int(prev)][int(node)]
prev = node
return dist
def swap_2opt(tour, i, k):
"""
Swaps two edges by reversing a section of nodes
:param list tour: TSP tour
:param int i: First index for the swap
:param int j: Second index for the swap
"""
# assert tour[0] == 0 and tour[-1] != 0
if k <= i:
i_a = i
i = k
k = i_a
assert i >= 0 and i < (len(tour) - 1)
assert k >= i and k < len(tour)
new_tour = tour[0:i]
new_tour = np.append(new_tour, np.flip(tour[i:k + 1], axis=0))
new_tour = np.append(new_tour, tour[k+1:])
# assert len(new_tour) == len(tour)
new_tour = [int(i) for i in new_tour]
return list(new_tour)
def heuristic_2opt_fi(positions):
"""
Improves an existing route using 2-opt until no improvement is found
:param list tour: TSP tour
:param list distances: distances between points (i, j)
:param bool return_indices: return list of indices otherwise return nodes
:param bool return_first: return just the first 2opt move
:param bool return_first: return just the first 2opt move
"""
improvement = True
tour = [x for x in range(len(positions))]
best_tour = tour
distances = calculate_distances(positions)
distances = np.rint(distances*10000)
distances = distances.astype(int)
best_distance = route_distance(tour, distances)
# tours: list with tours
tours = []
# swap_indices: list with indices to swap
swap_indices = []
# print("initial distance", best_distance)
while improvement:
improvement = False
for i in range(0, len(best_tour) - 1):
for k in range(i+1, len(best_tour)):
new_tour = swap_2opt(best_tour, i, k)
new_distance = route_distance(new_tour, distances)
if new_distance < best_distance:
swap_indices.append([i, k])
tours.append(best_tour)
best_distance = new_distance
best_tour = new_tour
improvement = True
break
if improvement:
break
assert len(best_tour) == len(tour)
swap_indices = np.array(swap_indices)
best_tour = np.array(best_tour)
tours = np.array(tours)
return best_distance/10000
def heuristic_2opt_bi(positions):
"""
Improves an existing route using 2-opt until no improvement is found
:param list tour: TSP tour
:param list distances: distances between points (i, j)
:param bool return_indices: return list of indices otherwise return nodes
:param bool return_first: return just the first 2opt move
:param bool return_first: return just the first 2opt move
"""
improvement = True
tour = [x for x in range(len(positions))]
best_tour = tour
distances = calculate_distances(positions)
distances = np.rint(distances*10000)
distances = distances.astype(int)
best_distance = route_distance(tour, distances)
# tours: list with tours
tours = []
# swap_indices: list with indices to swap
swap_indices = []
# print("initial distance", best_distance)
while improvement:
improvement = False
for i in range(0, len(best_tour) - 1):
for k in range(i+1, len(best_tour)):
new_tour = swap_2opt(tour, i, k)
new_distance = route_distance(new_tour, distances)
# print("i,j", i,k)
if new_distance < best_distance:
swap_indices.append([i, k])
tours.append(best_tour)
best_distance = new_distance
best_tour = new_tour
improvement = True
tour = best_tour
assert len(best_tour) == len(tour)
swap_indices = np.array(swap_indices)
best_tour = np.array(best_tour)
tours = np.array(tours)
# return best_tour, best_distance/10000
return best_distance/10000
def heuristic_2opt_fi_restart(positions, steps):
"""
Improves an existing route using 2-opt until no improvement is found
:param list tour: TSP tour
:param list distances: distances between points (i, j)
:param bool return_indices: return list of indices otherwise return nodes
:param bool return_first: return just the first 2opt move
:param bool return_first: return just the first 2opt move
"""
improvement = True
tour = [x for x in range(len(positions))]
best_tour = tour
distances = calculate_distances(positions)
distances = np.rint(distances*10000)
distances = distances.astype(int)
best_distance = route_distance(tour, distances)
restart_distance = best_distance
# print("initial distance", best_distance)
for n in range(steps):
improvement = False
for i in range(0, len(best_tour) - 1):
for k in range(i+1, len(best_tour)):
new_tour = swap_2opt(tour, i, k)
new_distance = route_distance(new_tour, distances)
if new_distance < best_distance:
best_distance = new_distance
best_tour = new_tour
improvement = True
tour = new_tour
break
if improvement:
break
if improvement is False:
if best_distance < restart_distance:
restart_distance = best_distance
restart_tour = best_tour
tour = create_tour(len(tour))
best_distance = 1e10
if n == steps-1:
if best_distance < restart_distance:
restart_distance = best_distance
restart_tour = best_tour
assert len(best_tour) == len(tour)
return restart_distance/10000
# return_dict[procnum] = restart_tour, restart_distance/10000
def heuristic_2opt_bi_restart(positions, steps):
"""
Improves an existing route using 2-opt until no improvement is found
:param list tour: TSP tour
:param list distances: distances between points (i, j)
:param bool return_indices: return list of indices otherwise return nodes
:param bool return_first: return just the first 2opt move
:param bool return_first: return just the first 2opt move
"""
improvement = True
tour = [x for x in range(len(positions))]
best_tour = tour
distances = calculate_distances(positions)
distances = np.rint(distances*10000)
distances = distances.astype(int)
best_distance = route_distance(tour, distances)
restart_distance = best_distance
# tours: list with tours
tours = []
# swap_indices: list with indices to swap
swap_indices = []
# print("initial distance", best_distance)
for n in range(steps):
improvement = False
for i in range(0, len(best_tour) - 1):
for k in range(i+1, len(best_tour)):
new_tour = swap_2opt(tour, i, k)
new_distance = route_distance(new_tour, distances)
if new_distance < best_distance:
swap_indices.append([i, k])
tours.append(best_tour)
best_distance = new_distance
best_tour = new_tour
improvement = True
tour = best_tour
if improvement is False:
if best_distance < restart_distance:
restart_distance = best_distance
restart_tour = best_tour
tour = create_tour(len(tour))
best_distance = 1e10
if n == steps-1:
if best_distance < restart_distance:
restart_distance = best_distance
restart_tour = best_tour
assert len(best_tour) == len(tour)
swap_indices = np.array(swap_indices)
best_tour = np.array(best_tour)
tours = np.array(tours)
return restart_distance/10000
# return_dict[procnum] = restart_tour, restart_distance/10000