-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathOptimalAttentionPaperMP.py
97 lines (73 loc) · 3.07 KB
/
OptimalAttentionPaperMP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import att_paper_utils as utils
import argparse
import os
import time
import numpy as np
import pandas as pd
import multiprocessing as mp
from concorde.tsp import TSPSolver
from tqdm import tqdm
parser = argparse.ArgumentParser(description='')
parser.add_argument('--n_points', type=int, default=20)
parser.add_argument('--dataset_path', type=str, default='data/attention-paper/tsp20_test_seed1234.pkl')
class GenerateOptimalTSP():
"""
Generate Concorde Solutions for a TSP dataset
"""
def __init__(self, data_path, n_points, solve=True):
self.data = utils.make_dataset(filename=data_path)
self.data_size = len(self.data)
self.n_points = n_points
self.solve = solve
self.generate_data()
def generate_data(self):
points_list = []
solutions = []
opt_dists = []
data_iter = tqdm(range(self.data_size), unit='data')
for i, _ in enumerate(data_iter):
data_iter.set_description('Generating data points %i/%i'
% (i+1, self.data_size))
points = np.array(self.data[i])
points_list.append(points)
# solutions_iter: for tqdm
solutions_iter = tqdm(points_list, unit='solve')
if self.solve:
num_cpus = os.cpu_count()
result = []
# start = time.perf_counter()
with mp.Pool(num_cpus) as p:
r = p.map
for i, points in enumerate(solutions_iter):
points_scaled = points*10000
solver = TSPSolver.from_data(points_scaled[:, 0],
points_scaled[:, 1],
'EUC_2D')
with mp.Pool(num_cpus) as p:
r = p.imap(solver.solve)
result.extend(r)
# for i, points in enumerate(solutions_iter):
# solutions_iter.set_description('Solved %i/%i'
# % (i+1, len(points_list)))
#
# points_scaled = points*10000
# solver = TSPSolver.from_data(points_scaled[:, 0],
# points_scaled[:, 1],
# 'EUC_2D')
# sol = solver.solve(time_bound=-1, verbose=False)
# opt_tour, opt_dist = sol.tour, sol.optimal_value/10000
# solutions.append(opt_tour)
# opt_dists.append(opt_dist)
else:
solutions = None
opt_dists = None
if self.solve:
print(' [*] Avg Optimal Tour {:.5f} +- {:.5f}'.format(np.mean(opt_dists), 2 * np.std(opt_dists) / np.sqrt(len(opt_dists))))
data = {'Points': points_list,
'OptTour': solutions,
'OptDistance': opt_dists}
df = pd.DataFrame(data)
df.to_json(path_or_buf='data/att-TSP'+str(self.n_points)+'-data-test'+'.json')
args = parser.parse_args()
# if __name__ == '__main__':
GenerateOptimalTSP(args.dataset_path, args.n_points)