-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathDataGenerator.py
43 lines (34 loc) · 1.28 KB
/
DataGenerator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import torch
import random
import pandas as pd
import numpy as np
from tqdm import tqdm
from torch.utils.data import Dataset
#######################################
# Dataset
#######################################
class TSPDataset(Dataset):
def __init__(self, dataset_fname=None, size=50, num_samples=10, seed=None):
super(TSPDataset, self).__init__()
self.data_set = []
self.opt = []
if seed is not None:
random.seed(seed)
if dataset_fname is not None:
print(' [*] Loading dataset from {}'.format(dataset_fname))
dset = pd.read_json(dataset_fname)
ids = random.sample(range(len(dset)), num_samples)
for i in tqdm(ids):
self.data_set.append(torch.from_numpy(np.array(dset.iloc[i,
0])))
self.opt.append(dset.iloc[i, -1])
else:
# randomly sample points uniformly from [0, 1]^2
for i in range(num_samples):
x = torch.FloatTensor(size, 2).uniform_(0, 1)
self.data_set.append(x)
self.size = len(self.data_set)
def __len__(self):
return self.size
def __getitem__(self, idx):
return self.data_set[idx]