-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmakemodel.py
211 lines (173 loc) · 5.46 KB
/
makemodel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import torchvision.models as models
import torch
import torch.nn as nn
import torch.nn.functional as F
from MobileNetV2 import MobileNetV2
def build_model(
last_layer_num_neurons,
name = 'efficientnet_b0',
num_classes=10
):
last_layer_num_neurons = [int(l) for l in last_layer_num_neurons.split(',')]
if name == 'MobileNetV2':
model = MobileNetV2(n_classes=num_classes)
elif name == 'efficientnet_b0':
model = EfficientV1B0(
last_layer_num_neurons,
num_classes,
pretrained=True,
n_channels=3 ,
)
elif name == 'resnet18':
model = ResNet(
last_layer_num_neurons,
num_classes,
pretrained=True,
n_channels=3
)
elif name == 'CNN1':
model = CNN1(
num_classes
)
elif name == 'CNN2':
model = CNN2(
num_classes
)
elif name == 'CNN3':
model = CNN3(
num_classes
)
return model
class EfficientV1B0(nn.Module):
def __init__(
self,
last_layer_num_neurons,
num_classes,
pretrained=True,
n_channels=3 ,
):
"""
resnet18 architecture is designed with 3channels input
"""
super(EfficientV1B0, self).__init__()
eff = models.efficientnet_b0(pretrained=True)
modules=list(eff.children())[:-1]
self.basenet = nn.Sequential(*modules)
fc_modules = [
nn.Linear(
last_layer_num_neurons[enu],
last_layer_num_neurons[enu+1]
)
for enu in range(len(last_layer_num_neurons)-1)
] + [
nn.Linear(
last_layer_num_neurons[-1],
num_classes
)
]
self.fc = nn.Sequential(*fc_modules)
def forward(self, x):
for i in range(len(self.basenet)):
x = self.basenet[i](x)
x = x.flatten(start_dim=1)
x = self.fc(x)
return x
class ResNet(nn.Module):
def __init__(
self,
last_layer_num_neurons,
num_classes,
pretrained=True,
n_channels=3 ,
):
"""
resnet18 architecture is designed with 3channels input
"""
super(ResNet, self).__init__()
resnet18 = models.resnet18(pretrained=pretrained)
modules=list(resnet18.children())[:-1]
if n_channels!=3:
modules[0] = nn.Conv2d(n_channels, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
self.basenet = nn.Sequential(*modules)
fc_modules = [
nn.Linear(
last_layer_num_neurons[enu],
last_layer_num_neurons[enu+1]
)
for enu in range(len(last_layer_num_neurons)-1)
] + [
nn.Linear(
last_layer_num_neurons[-1],
num_classes
)
]
self.fc = nn.Sequential(*fc_modules)
def forward(self, x):
for i in range(len(self.basenet)):
x = self.basenet[i](x)
x = x.flatten(start_dim=1)
x = self.fc(x)
return x
class CNN1(nn.Module):
def __init__(
self,
num_classes
):
super().__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 8, 5)
self.conv3 = nn.Conv2d(8, 8, 5)
self.conv4 = nn.Conv2d(8, 12, 5)
self.fc1 = nn.Linear(12*3*3, num_classes)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = self.pool(F.relu(self.conv3(x)))
x = self.pool(F.relu(self.conv4(x)))
#x = self.pool(F.relu(self.conv5(x)))
#x = self.pool(F.relu(self.conv6(x)))
x = torch.flatten(x, 1) # flatten all dimensions except batch
x = F.relu(self.fc1(x))
return x
class CNN2(nn.Module):
def __init__(
self,
num_classes
):
super().__init__()
self.conv1 = nn.Conv2d(3, 16, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(16, 32, 5)
self.conv3 = nn.Conv2d(32, 64, 5)
self.conv4 = nn.Conv2d(64, 64, 5)
self.fc1 = nn.Linear(64*3*3, num_classes)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = self.pool(F.relu(self.conv3(x)))
x = self.pool(F.relu(self.conv4(x)))
#x = self.pool(F.relu(self.conv5(x)))
#x = self.pool(F.relu(self.conv6(x)))
x = torch.flatten(x, 1) # flatten all dimensions except batch
x = F.relu(self.fc1(x))
return x
# class CNN3(nn.Module):
# def __init__(
# self,
# num_classes
# ):
# super().__init__()
# self.conv1 = nn.Conv2d(3, 6, 5)
# self.pool = nn.MaxPool2d(2, 2)
# self.conv2 = nn.Conv2d(6, 16, 5)
# self.fc1 = nn.Linear(16 * 5 * 5, 32)
# self.fc3 = nn.Linear(32, num_classes)
# def forward(self, x):
# x = self.pool(F.relu(self.conv1(x)))
# x = self.pool(F.relu(self.conv2(x)))
# x = torch.flatten(x, 1) # flatten all dimensions except batch
# x = F.relu(self.fc1(x))
# x = F.relu(self.fc2(x))
# x = self.fc3(x)
# return x