-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy path16_tensorboard.py
159 lines (133 loc) · 5.43 KB
/
16_tensorboard.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
############## TENSORBOARD ########################
import sys
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
# default `log_dir` is "runs" - we'll be more specific here
writer = SummaryWriter('runs/mnist1')
###################################################
# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Hyper-parameters
input_size = 784 # 28x28
hidden_size = 500
num_classes = 10
num_epochs = 1
batch_size = 64
learning_rate = 0.001
# MNIST dataset
train_dataset = torchvision.datasets.MNIST(root='./data',
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = torchvision.datasets.MNIST(root='./data',
train=False,
transform=transforms.ToTensor())
# Data loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)
examples = iter(test_loader)
example_data, example_targets = next(examples)
for i in range(6):
plt.subplot(2,3,i+1)
plt.imshow(example_data[i][0], cmap='gray')
#plt.show()
############## TENSORBOARD ########################
img_grid = torchvision.utils.make_grid(example_data)
writer.add_image('mnist_images', img_grid)
#writer.close()
#sys.exit()
###################################################
# Fully connected neural network with one hidden layer
class NeuralNet(nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(NeuralNet, self).__init__()
self.input_size = input_size
self.l1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.l2 = nn.Linear(hidden_size, num_classes)
def forward(self, x):
out = self.l1(x)
out = self.relu(out)
out = self.l2(out)
# no activation and no softmax at the end
return out
model = NeuralNet(input_size, hidden_size, num_classes).to(device)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
############## TENSORBOARD ########################
writer.add_graph(model, example_data.reshape(-1, 28*28).to(device))
#writer.close()
#sys.exit()
###################################################
# Train the model
running_loss = 0.0
running_correct = 0
n_total_steps = len(train_loader)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
# origin shape: [100, 1, 28, 28]
# resized: [100, 784]
images = images.reshape(-1, 28*28).to(device)
labels = labels.to(device)
# Forward pass
outputs = model(images)
loss = criterion(outputs, labels)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
running_loss += loss.item()
_, predicted = torch.max(outputs.data, 1)
running_correct += (predicted == labels).sum().item()
if (i+1) % 100 == 0:
print (f'Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{n_total_steps}], Loss: {loss.item():.4f}')
############## TENSORBOARD ########################
writer.add_scalar('training loss', running_loss / 100, epoch * n_total_steps + i)
running_accuracy = running_correct / 100 / predicted.size(0)
writer.add_scalar('accuracy', running_accuracy, epoch * n_total_steps + i)
running_correct = 0
running_loss = 0.0
###################################################
# Test the model
# In test phase, we don't need to compute gradients (for memory efficiency)
class_labels = []
class_preds = []
with torch.no_grad():
n_correct = 0
n_samples = 0
for images, labels in test_loader:
images = images.reshape(-1, 28*28).to(device)
labels = labels.to(device)
outputs = model(images)
# max returns (value ,index)
values, predicted = torch.max(outputs.data, 1)
n_samples += labels.size(0)
n_correct += (predicted == labels).sum().item()
class_probs_batch = [F.softmax(output, dim=0) for output in outputs]
class_preds.append(class_probs_batch)
class_labels.append(labels)
# 10000, 10, and 10000, 1
# stack concatenates tensors along a new dimension
# cat concatenates tensors in the given dimension
class_preds = torch.cat([torch.stack(batch) for batch in class_preds])
class_labels = torch.cat(class_labels)
acc = 100.0 * n_correct / n_samples
print(f'Accuracy of the network on the 10000 test images: {acc} %')
############## TENSORBOARD ########################
classes = range(10)
for i in classes:
labels_i = class_labels == i
preds_i = class_preds[:, i]
writer.add_pr_curve(str(i), labels_i, preds_i, global_step=0)
writer.close()
###################################################