-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathf1_thresh_apip.py
164 lines (138 loc) · 6.2 KB
/
f1_thresh_apip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# get scores for F1 Threshold(rho) experiments for APIP flavors
import re
import os
import sys
import random
import argparse
import json
from datetime import datetime
from collections import OrderedDict
import msgpack, time
from tqdm import tqdm
import numpy as np
import torch
from torch.autograd import Variable
from apip import utils
from apip.model import DocReaderModel
parser = argparse.ArgumentParser(
description='Train a Document Reader model.'
)
parser = utils.add_arguments(parser)
args = parser.parse_args()
if not args.drop_nn:
args.dropout_rate = 0.
# set model dir
model_dir = args.model_dir
model_dir = os.path.abspath(model_dir)
torch.set_printoptions(precision=10)
# save model configuration
s = "\nParameters:\n"
for k in sorted(args.__dict__):
s += "{} = {} \n".format(k, args.__dict__[k])
print(s)
# set random seed
seed = args.seed if args.seed >= 0 else int(random.random()*1000)
print ('seed:', seed)
random.seed(seed)
torch.manual_seed(seed)
if args.cuda:
torch.cuda.manual_seed(seed)
def accuracies_on_ds(data_file, inputs, model, n_ans):
train, dev, dev_y, train_y, embedding, opt, q_labels, ql_mask = inputs
model.opt['interpret'] = False
batches = utils.BatchGen(dev, batch_size=args.batch_size, evaluation=True, gpu=args.cuda)
predictions = []
pred_answers = {}
for i, batch in enumerate(batches):
pred = model.predict(batch)[0]
predictions.extend(pred)
em, f1 = utils.score(predictions, dev_y)
print("[EM: {0:.2f} F1: {1:.2f}] on {2}".format(em, f1, data_file))
batches = utils.BatchGen(dev, batch_size=args.batch_size, evaluation=True, gpu=args.cuda, shuffle=True)
model.opt['interpret'] = True
t_a, t_total_a = {0.1:0, 0.2:0, 0.3:0, 0.4:0, 0.5:0, 0.6:0, 0.7:0, 0.8:0, 0.9:0}, 0
f1s_a = []; ovs_a = []
# evaluate the model for all interpretations and all answers
# if f1 score for all GT answers is > p then count answer as correct
for i, batch in tqdm(enumerate(batches)):
i_predictions = []
truth = np.take(dev_y, batches.indices[i], 0)
if args.n_actions>0:
for a in range(args.n_actions):
latent_a = Variable(torch.ones(batch[0].size(0))*a).long().cuda()
pred = model.predict_inter(batch, latent_a=latent_a)
i_predictions.append(pred[0])
else:
i_predictions = model.predict(batch)[0]
for b in range(batch[0].size(0)):
f1s = []
for ta in truth[b]:
f1_v = []
for a in range(args.n_actions):
_, f1_a = utils.score_test_alli([i_predictions[a][b]], [[ta]])
f1_v += [f1_a]
if args.n_actions>0:
f1s += [max(f1_v)]
else:
_, f1_v = utils.score_test_alli([i_predictions[b]], [[ta]])
f1s += [f1_v]
f1s = np.array(f1s)
for p in t_a.keys():
t_a[p] = t_a[p] + int((f1s>p).sum() == n_ans)
f1_i = []; ov_i = []
for a in range(args.n_actions):
_, f1_a = utils.score_test_alli([i_predictions[a][b]], [truth[b]])
ov_a = utils.overlap([i_predictions[a][b]], [truth[b]])
f1_i += [f1_a]; ov_i += [ov_a]
if args.n_actions == 0:
_, f1_i = utils.score_test_alli([i_predictions[b]], [truth[b]])
ov_i = utils.overlap([i_predictions[b]], [truth[b]])
f1s_a += [f1_i]; ovs_a += [ov_i]
t_total_a += batch[0].size(0)
f1s_a = np.array(f1s_a); ovs_a = np.array(ovs_a)
return t_total_a, f1s_a, ovs_a, t_a
def main():
print('[program starts.]')
args.data_file = 'SQuAD/data_a2.msgpack'
train, dev, dev_y, train_y, embedding, opt, q_labels, ql_mask = utils.load_data(vars(args), args)
if args.resume:
print('[loading previous model...]')
checkpoint = torch.load(os.path.join(model_dir, args.restore_dir, args.resume))
if args.resume_options:
opt = checkpoint['config']
state_dict = checkpoint['state_dict']
model = DocReaderModel(opt, embedding, state_dict)
else:
raise RuntimeError('Include checkpoint of the trained model')
if args.cuda:
model.cuda()
inputs = [train, dev, dev_y, train_y, embedding, opt, q_labels, ql_mask]
t_total_a2, f1s_a2, ovs_a2, t_a2 = accuracies_on_ds('SQuAD/data_a2.msgpack', inputs, model, 2)
args.data_file = 'SQuAD/data_a3.msgpack'
train, dev, dev_y, train_y, embedding, opt, q_labels, ql_mask = utils.load_data(vars(args), args)
inputs = [train, dev, dev_y, train_y, embedding, opt, q_labels, ql_mask]
t_total_a3, f1s_a3, ovs_a3, t_a3 = accuracies_on_ds('SQuAD/data_a3.msgpack', inputs, model, 3)
args.data_file = 'SQuAD/data_a1.msgpack'
train, dev, dev_y, train_y, embedding, opt, q_labels, ql_mask = utils.load_data(vars(args), args)
inputs = [train, dev, dev_y, train_y, embedding, opt, q_labels, ql_mask]
t_total_a1, f1s_a1, ovs_a1, t_a1 = accuracies_on_ds('SQuAD/data_a1.msgpack', inputs, model, 1)
def toscore(score, total):
d = {}
for p,s in score.items():
d[p] = round(100.*s/total, 2)
td = OrderedDict(sorted(d.items(), key=lambda t: t[0]))
return td
print("ratio |a|=1: ", toscore(t_a1, t_total_a1), t_total_a1)
print("ratio |a|=2: ", toscore(t_a2, t_total_a2), t_total_a2)
print("ratio |a|=3: ", toscore(t_a3, t_total_a3), t_total_a3)
def toscore2(score):
return round(100. * score.sum() / len(score), 2)
axis = 1
if args.n_actions > 0:
print("[max F1_a1: {} F1_a2: {} F1_a3: {}]".format(json.dumps(toscore2(np.max(f1s_a1, axis)),toscore2(np.max(f1s_a2, axis)), toscore2(np.max(f1s_a3, axis)))))
print("[max RE_a1: {} RE_a2: {} RE_a3: {}]".format(json.dumps(toscore2(np.max(ovs_a1, axis)),toscore2(np.max(ovs_a2, axis)), toscore2(np.max(ovs_a3, axis)))))
else:
print("[max F1_a1: {} max F1_a2: {} F1_a3: {}]".format(json.dumps(toscore2(f1s_a1), toscore2(f1s_a2), toscore2(f1s_a3))))
print("[max RE_a1: {} max RE_a2: {} RE_a3: {}]".format(json.dumps(toscore2(ovs_a1),toscore2(ovs_a2), toscore2(ovs_a3))))
if __name__ == '__main__':
main()