-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgear_classn.py
72 lines (60 loc) · 2.28 KB
/
gear_classn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
from keras.models import Sequential
from keras.layers import Dense
import numpy as np
import scipy
from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasClassifier
from keras.utils import np_utils
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
from xgboost import XGBClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
# from sklearn.ensemble import GradientBoostingClassifier
from sklearn.ensemble import RandomForestClassifier
xs = []
ys = []
accels = []
brake = []
opticalFlow = []
gear = []
gearFeatures = []
dataPath = "indian_dataset/"
corrDataPath = "indian_dataset/corr/"
fileNamePrefix = "circuit2_x264.mp4 "
#read data.txt
with open(dataPath+"data.txt") as f:
# with open("driving_dataset/data.txt") as f:
for line in f:
# xs.append("driving_dataset/" + line.split()[0])
xs.append(dataPath + fileNamePrefix + str(int(line.split()[0])).zfill(5)+".jpg")
#the paper by Nvidia uses the inverse of the turning radius,
#but steering wheel angle is proportional to the inverse of turning radius
#so the steering wheel angle in radians is used as the output
steer_value = float(line.split()[1])
accel_value = float(line.split()[2])
brake_value = float(line.split()[3])
gear_value = float(line.split()[4])
ys.append(steer_value)
accels.append(accel_value)
brake.append(brake_value)
gear.append(gear_value)
gearFeatures.append([steer_value, accel_value, brake_value])
# print(float(line.split()[1]) * scipy.pi / 180)
i = 0
with open(corrDataPath+"optFlow.txt") as f:
# with open("driving_dataset/data.txt") as f:
for line in f:
# xs.append("driving_dataset/" + line.split()[0])
opticalFlow.append(float(line.split()[0]) * scipy.pi / 180)
gearFeatures[i].append(float(line.split()[0]))
i += 1
seed = 1
X_train, X_test, y_train, y_test = train_test_split(np.array(gearFeatures), np.array(gear), test_size=0.33, random_state=seed)
model = RandomForestClassifier()
model.fit(X_train, y_train)
#Make predictions for test data
y_pred = model.predict(X_test)
print(y_pred)
print(accuracy_score(y_test, y_pred))