-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_scores.py
59 lines (55 loc) · 1.65 KB
/
evaluate_scores.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import sys
import pathlib as Path
import argparse
from src.utils.analysis_utils import *
from src.utils.generation_funcs import (
parity_problem_y_act,
majority_problem_y_act,
generate_ics_majority,
generate_ics_parity,
)
"""
Creates final_elite.pkl and final_fitness.pkl by evaluating on larger set of unbiased ICs.
Usage:
>>> python evaluate_scores.py results/majority
"""
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Evaluate rules on an unbiased set of ICs."
)
parser.add_argument("results_subd")
parser.add_argument("problem_type")
parser.add_argument(
"k",
type=int,
default=10,
help="Number of rule to evaluate on larger set of unbiased ICs",
)
parser.add_argument(
"-o", action="store_true", help="Whether to overwrite existing fitness files"
)
args = parser.parse_args()
results_subd = Path(args.results_subd)
problem_type = args.problem_type
k = args.k
overwrite = args.o
if problem_type == "majority":
print("Using majority problem generation functions...")
get_y_act = majority_problem_y_act
generate_ics = generate_ics_majority
elif problem_type == "parity":
print("Using parity problem generation functions...")
get_y_act = parity_problem_y_act
generate_ics = generate_ics_majority
else:
raise ValueError
evaluate_final_fitnesses(
results_subd,
get_y_true=get_y_act,
generate_ics=generate_ics,
multiprocess=True,
num_processes=4,
k=k,
overwrite=overwrite,
)
get_best_scores(results_subd)