forked from hoshir/zebra
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstable.c
747 lines (596 loc) · 20.3 KB
/
stable.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
/*
File: stable.c
Created: March 20, 1999
Modified: November 22, 2005
Authors: Gunnar Andersson ([email protected])
David John Summers
Toshihiko Okuhara
Contents: Code which conservatively estimates the number of
stable (unflippable) discs using the concept
"Zardoz stability" along with edge tables.
This piece of software is released under the GPL.
See the file COPYING for more information.
*/
#include "porting.h"
#include <stdio.h>
#include "bitboard.h"
#include "bitbtest.h"
#include "constant.h"
#include "end.h"
#include "macros.h"
#include "patterns.h"
/* This constant is used in the DynP stuff for edge stability
and simply denotes "value not known". */
#define UNDETERMINED -1
/* The maximum number of nodes to search when attempting
a perfect stability assessment */
#define MAX_STABILITY_NODES 10000
/* When this flag is set, the DynP tables are calculated and
output and then the program is terminated. */
#define DEBUG 0
/* Global variables */
/* All discs determined as stable last time COUNT_STABLE was called
for the two colors */
BitBoard last_black_stable, last_white_stable;
/* Local variables */
/* For each of the 3^8 edges, edge_stable[] holds an 8-bit mask
where a bit is set if the corresponding disc can't be changed EVER. */
static short edge_stable[6561];
/* For each edge, *_stable[] holds the number of safe discs counted
as follows: 1 for a stable corner and 2 for a stable non-corner.
This to avoid counting corners twice. */
static unsigned char black_stable[6561], white_stable[6561];
/* A conversion table from the 2^8 edge values for one player to
the corresponding base-3 value. */
static short base_conversion[256];
/* The base-3 indices for the edges */
static int edge_a1h1, edge_a8h8, edge_a1a8, edge_h1h8;
/* Position list used in the complete stability search */
MoveLink stab_move_list[100];
#if 0
INLINE static void
apply_64( BitBoard *target,
BitBoard base,
unsigned int hi_mask,
unsigned int lo_mask ) {
unsigned int cond_mask = (unsigned int) -(((~base.high & hi_mask) | (~base.low & lo_mask)) == 0);
/* All 1 if all of hi/lo mask bits are set */
target->high |= hi_mask & cond_mask;
target->low |= lo_mask & cond_mask;
}
#endif
INLINE static void
and_line_shift_64( BitBoard *target,
BitBoard base,
int shift,
BitBoard dir_ss ) {
/* Shift to the left */
dir_ss.high |= (base.high << shift) | (base.low >> (32 - shift));
dir_ss.low |= base.low << shift;
/* Shift to the right */
dir_ss.high |= base.high >> shift;
dir_ss.low |= (base.low >> shift) | (base.high << (32 - shift));
target->high &= dir_ss.high;
target->low &= dir_ss.low;
}
/*
EDGE_ZARDOZ_STABLE
Determines the bit mask for (a subset of) the stable discs in a position.
Zardoz' algorithm + edge tables is used.
*/
INLINE static void
edge_zardoz_stable( BitBoard *ss,
BitBoard dd,
BitBoard od ) {
/* dd is the disks of the side we are looking for stable disks for
od is the opponent
ss are the stable disks */
BitBoard ost, fb, lrf, udf, daf, dbf;
BitBoard expand_ss;
unsigned int t;
/* ost is a simple test to see if numbers of
stable disks have stopped increasing.
fb is the squares which have been played
ie either by white or black
udf are the up-down columns that are filled, and so no vertical flips
lrf are the left-right
daf are the NE-SW diags filled
dbf are the NW-SE diags filled */
/* a stable disk is a disk that has a stable disk on one
side in each of the 4 directions
N.B. beyond the edges is of course stable */
fb.high = dd.high | od.high;
fb.low = dd.low | od.low;
t = fb.high;
t &= (t >> 4);
t &= (t >> 2);
t &= (t >> 1);
lrf.high = ((t & 0x01010101) * 255) | 0x81818181;
t = fb.low;
t &= (t >> 4);
t &= (t >> 2);
t &= (t >> 1);
lrf.low = ((t & 0x01010101) * 255) | 0x81818181;
t = fb.high & fb.low;
t &= (t >> 16) | (t << 16);
t &= (t >> 8) | (t << 24);
udf.high = t | 0xFF000000;
udf.low = t | 0x000000FF;
daf.high = 0xFF818181;
daf.low = 0x818181FF;
t = ((((fb.high << 4) | 0x0F0F0F0F) & fb.low) | 0xE0C08000) & 0x1FFFFFFE;
t &= (t >> 14) | (t << 14); /* rotate within bit 1 and bit 28 */
t &= (t >> 7) | (t << 21);
daf.low |= t & 0x1F3F7EFC;
daf.high |= (t >> 4) & 0x0103070F;
t = ((((fb.low >> 4) | 0xF0F0F0F0) & fb.high) | 0x00010307) & 0x7FFFFFF8;
t &= (t >> 14) | (t << 14); /* rotate within bit 3 and bit 30 */
t &= (t >> 7) | (t << 21);
daf.high |= t & 0x3E7CF8F0;
daf.low |= (t << 4) & 0xE0C08000;
dbf.high = 0xFF818181;
dbf.low = 0x818181FF;
t = ((fb.high >> 4) | 0xF0F0F0F0) & fb.low;
/* 17 16 15 14 13 12 11 10 9 8 NG 6 5 4 3 2 1 0 */
t &= (t >> 18) | 0x0003C000; /* * * * * 31 30 29 28 27 26 25 NG 23 22 21 20 19 18 */
t &= (t >> 9) | (t << 9); /* 8 NG 6 5 4 3 2 1 0 17 16 15 14 13 12 11 10 9 */
t |= (t << 18); /* 26 25 NG 23 22 21 20 19 18 * * * * 31 30 29 28 27 */
dbf.low |= t & 0xF8FC7E3F;
dbf.high |= (t << 4) & 0x80C0E0F0;
t = ((fb.low << 4) | 0x0F0F0F0F) & fb.high;
t &= (t >> 18) | 0x0003C000;
t &= (t >> 9) | (t << 9);
t |= (t << 18);
dbf.high |= t & 0x7C3E1F0F;
dbf.low |= (t >> 4) & 0x07030100;
ss->high |= (lrf.high & udf.high & daf.high & dbf.high & dd.high);
ss->low |= (lrf.low & udf.low & daf.low & dbf.low & dd.low);
if ((ss->high | ss->low) == 0)
return;
do {
ost = *ss;
expand_ss.high = lrf.high | (ost.high << 1) | (ost.high >> 1);
expand_ss.low = lrf.low | (ost.low << 1) | (ost.low >> 1);
and_line_shift_64( &expand_ss, ost, 8, udf );
and_line_shift_64( &expand_ss, ost, 7, daf );
and_line_shift_64( &expand_ss, ost, 9, dbf );
ss->high = ost.high | (expand_ss.high & dd.high);
ss->low = ost.low | (expand_ss.low & dd.low);
} while ( (ost.high ^ ss->high) | (ost.low ^ ss->low) ); /* changing */
// ss->high &= dd.high;
// ss->low &= dd.low;
}
/*
COUNT_EDGE_STABLE
Returns the number of stable edge discs for COLOR.
Side effect: The edge indices are calculated. They are needed
by COUNT_STABLE below.
*/
int
count_edge_stable( int color,
BitBoard col_bits,
BitBoard opp_bits ) {
unsigned int col_mask, opp_mask, ix_a1a8, ix_h1h8, ix_a1h1, ix_a8h8;
col_mask = (((col_bits.low & 0x01010101) + ((col_bits.high & 0x01010101) << 4)) * 0x01020408) >> 24;
opp_mask = (((opp_bits.low & 0x01010101) + ((opp_bits.high & 0x01010101) << 4)) * 0x01020408) >> 24;
ix_a1a8 = base_conversion[col_mask] - base_conversion[opp_mask];
col_mask = ((((col_bits.low & 0x80808080) >> 4) + (col_bits.high & 0x80808080)) * (0x01020408 / 8)) >> 24;
opp_mask = ((((opp_bits.low & 0x80808080) >> 4) + (opp_bits.high & 0x80808080)) * (0x01020408 / 8)) >> 24;
ix_h1h8 = base_conversion[col_mask] - base_conversion[opp_mask];
ix_a1h1 = base_conversion[col_bits.low & 255] - base_conversion[opp_bits.low & 255];
ix_a8h8 = base_conversion[col_bits.high >> 24] - base_conversion[opp_bits.high >> 24];
if ( color == BLACKSQ ) {
edge_a1h1 = 3280 * EMPTY - ix_a1h1;
edge_a8h8 = 3280 * EMPTY - ix_a8h8;
edge_a1a8 = 3280 * EMPTY - ix_a1a8;
edge_h1h8 = 3280 * EMPTY - ix_h1h8;
return (unsigned char)(black_stable[edge_a1h1] + black_stable[edge_a1a8]
+ black_stable[edge_a8h8] + black_stable[edge_h1h8]) / 2;
} else {
edge_a1h1 = 3280 * EMPTY + ix_a1h1;
edge_a8h8 = 3280 * EMPTY + ix_a8h8;
edge_a1a8 = 3280 * EMPTY + ix_a1a8;
edge_h1h8 = 3280 * EMPTY + ix_h1h8;
return (unsigned char)(white_stable[edge_a1h1] + white_stable[edge_a1a8]
+ white_stable[edge_a8h8] + white_stable[edge_h1h8]) / 2;
}
}
/*
COUNT_STABLE
Returns the number of stable discs for COLOR.
Side effect: last_black_stable or last_white_stable is modified.
Note: COUNT_EDGE_STABLE must have been called immediately
before this function is called *or you lose big*.
*/
int
count_stable( int color,
BitBoard col_bits,
BitBoard opp_bits ) {
unsigned int t;
BitBoard col_stable;
BitBoard common_stable;
/* Stable edge discs */
common_stable.low = edge_stable[edge_a1h1];
common_stable.high = (((unsigned int)edge_stable[edge_a8h8]) << (unsigned int)24);
t = edge_stable[edge_a1a8];
common_stable.low |= ((t & 0x0F) * 0x00204081) & 0x01010101;
common_stable.high |= ((t >> 4) * 0x00204081) & 0x01010101;
t = edge_stable[edge_h1h8];
common_stable.low |= ((t & 0x0F) * 0x10204080) & 0x80808080;
common_stable.high |= ((t >> 4) * 0x10204080) & 0x80808080;
/* Expand the stable edge discs into a full set of stable discs */
col_stable.high = col_bits.high & common_stable.high;
col_stable.low = col_bits.low & common_stable.low;
edge_zardoz_stable( &col_stable, col_bits, opp_bits );
if ( color == BLACKSQ )
last_black_stable = col_stable;
else
last_white_stable = col_stable;
if ( col_stable.high | col_stable.low )
return non_iterative_popcount( col_stable.high, col_stable.low );
else
return 0;
}
/*
STABILITY_SEARCH
Searches the subtree rooted at the current position and tries to
find variations in which the discs in CANDIDATE_BITS are
flipped. Aborts if all those discs are stable in the subtree.
*/
static void
stability_search( BitBoard my_bits,
BitBoard opp_bits,
int side_to_move,
BitBoard *candidate_bits,
int max_depth,
int last_was_pass,
int *stability_nodes ) {
int sq, old_sq;
int mobility;
BitBoard black_bits, white_bits;
BitBoard new_my_bits, new_opp_bits;
BitBoard all_stable_bits;
(*stability_nodes)++;
if ( *stability_nodes > MAX_STABILITY_NODES )
return;
if ( max_depth >= 3 ) {
if ( side_to_move == BLACKSQ ) {
black_bits = my_bits;
white_bits = opp_bits;
}
else {
black_bits = opp_bits;
white_bits = my_bits;
}
CLEAR( all_stable_bits );
(void) count_edge_stable( BLACKSQ, black_bits, white_bits );
if ( (candidate_bits->high & black_bits.high) ||
(candidate_bits->low & black_bits.low ) ) {
(void) count_stable( BLACKSQ, black_bits, white_bits );
APPLY_OR( all_stable_bits, last_black_stable );
}
if ( (candidate_bits->high & white_bits.high) ||
(candidate_bits->low & white_bits.low ) ) {
(void) count_stable( WHITESQ, white_bits, black_bits );
APPLY_OR( all_stable_bits, last_white_stable );
}
if ( ((candidate_bits->high & ~all_stable_bits.high) == 0) &&
((candidate_bits->low & ~all_stable_bits.low ) == 0) )
return;
}
mobility = 0;
for ( old_sq = END_MOVE_LIST_HEAD, sq = stab_move_list[old_sq].succ;
sq != END_MOVE_LIST_TAIL;
old_sq = sq, sq = stab_move_list[sq].succ ) {
if ( TestFlips_bitboard[sq - 11]( my_bits.high, my_bits.low, opp_bits.high, opp_bits.low ) ) {
new_my_bits = bb_flips;
APPLY_ANDNOT( bb_flips, my_bits );
APPLY_ANDNOT( (*candidate_bits), bb_flips );
if ( max_depth > 1 ) {
FULL_ANDNOT( new_opp_bits, opp_bits, bb_flips );
stab_move_list[old_sq].succ = stab_move_list[sq].succ;
stability_search( new_opp_bits, new_my_bits, OPP( side_to_move ),
candidate_bits, max_depth - 1, FALSE,
stability_nodes );
stab_move_list[old_sq].succ = sq;
}
mobility++;
}
}
if ( (mobility == 0) && !last_was_pass )
stability_search( opp_bits, my_bits, OPP( side_to_move ),
candidate_bits, max_depth, TRUE, stability_nodes );
}
/*
COMPLETE_STABILITY_SEARCH
Tries to compute all stable discs by search the entire game tree.
The actual work is performed by STABILITY_SEARCH above.
*/
static void
complete_stability_search( int *board,
int side_to_move,
BitBoard *stable_bits ) {
int i, j;
int empties;
int shallow_depth;
int stability_nodes;
int abort;
BitBoard my_bits, opp_bits;
BitBoard all_bits, candidate_bits;
BitBoard test_bits;
/* Prepare the move list */
int last_sq = END_MOVE_LIST_HEAD;
for ( i = 0; i < 60; i++ ) {
int sq = position_list[i];
if ( board[sq] == EMPTY ) {
stab_move_list[last_sq].succ = sq;
stab_move_list[sq].pred = last_sq;
last_sq = sq;
}
}
stab_move_list[last_sq].succ = END_MOVE_LIST_TAIL;
empties = 0;
for ( i = 1; i <= 8; i++ )
for ( j = 1; j <= 8; j++ )
if ( board[10 * i + j] == EMPTY )
empties++;
/* Prepare the bitmaps for the stability search */
set_bitboards( board, side_to_move, &my_bits, &opp_bits );
FULL_OR( all_bits, my_bits, opp_bits );
FULL_ANDNOT( candidate_bits, all_bits, (*stable_bits) );
/* Search all potentially stable discs for at most 4 plies
to weed out those easily flippable */
stability_nodes = 0;
shallow_depth = 4;
stability_search( my_bits, opp_bits, side_to_move, &candidate_bits,
MIN( empties, shallow_depth ), FALSE, &stability_nodes );
/* Scan through the rest of the discs one at a time until the
maximum number of stability nodes is exceeded. Hopefully
a subset of the stable discs is found also if this happens. */
abort = FALSE;
for ( i = 1; (i <= 8) && !abort; i++ )
for ( j = 1; (j <= 8) && !abort; j++ ) {
int sq = 10 * i + j;
test_bits = square_mask[sq];
if ( (test_bits.high & candidate_bits.high) |
(test_bits.low & candidate_bits.low ) ) {
stability_search( my_bits, opp_bits, side_to_move, &test_bits,
empties, FALSE, &stability_nodes );
abort = (stability_nodes > MAX_STABILITY_NODES);
if ( !abort ) {
if ( test_bits.high | test_bits.low ) {
stable_bits->high |= test_bits.high;
stable_bits->low |= test_bits.low;
}
}
}
}
}
/*
GET_STABLE
Determines what discs on BOARD are stable with SIDE_TO_MOVE to play next.
The stability status of all squares (black, white and empty)
is returned in the boolean vector IS_STABLE.
*/
void
get_stable( int *board,
int side_to_move,
int *is_stable ) {
int i, j;
unsigned int mask;
BitBoard black_bits, white_bits, all_stable;
set_bitboards( board, BLACKSQ, &black_bits, &white_bits );
for ( i = 0; i < 100; i++ )
is_stable[i] = FALSE;
if ( ((black_bits.high | black_bits.low) == 0) ||
((white_bits.high | white_bits.low) == 0) )
for ( i = 1; i <= 8; i++ )
for ( j = 1; j <= 8; j++ )
is_stable[10 * i + j] = TRUE;
else { /* Nobody wiped out */
(void) count_edge_stable( BLACKSQ, black_bits, white_bits );
(void) count_stable( BLACKSQ, black_bits, white_bits );
(void) count_stable( WHITESQ, white_bits, black_bits );
FULL_OR( all_stable, last_black_stable, last_white_stable );
complete_stability_search( board, side_to_move, &all_stable );
for ( i = 1, mask = 1; i <= 4; i++ )
for ( j = 1; j <= 8; j++, mask <<= 1 )
if ( all_stable.low & mask )
is_stable[10 * i + j] = TRUE;
for ( i = 5, mask = 1; i <= 8; i++ )
for ( j = 1; j <= 8; j++, mask <<= 1 )
if ( all_stable.high & mask )
is_stable[10 * i + j] = TRUE;
}
}
#if DEBUG
/*
DISPLAY_ROW
Display an edge configuration and highlight the stable discs.
*/
static void
display_row( int pattern ) {
int i;
int mask = edge_stable[pattern];
int temp = pattern;
for ( i = 0; i < 8; i++ ) {
switch ( temp % 3) {
case EMPTY:
putchar( '-' );
break;
case BLACKSQ:
if ( mask & (1 << i) )
putchar( 'X' );
else
putchar( 'x' );
break;
case WHITESQ:
if ( mask & (1 << i) )
putchar( 'O' );
else
putchar( 'o' );
}
temp /= 3;
}
#ifdef TEXT_BASED
printf( " pattern %4d black %2d white %2d\n", pattern,
black_stable[pattern], white_stable[pattern] );
#endif
}
#endif
/*
RECURSIVE_FIND_STABLE
Returns a bit mask describing the set of stable discs in the
edge PATTERN. When a bit mask is calculated, it's stored in
a table so that any particular bit mask only is generated once.
*/
static int
recursive_find_stable( int pattern ) {
int i, j;
int new_pattern;
int stable;
int temp;
int row[8], stored_row[8];
if ( edge_stable[pattern] != UNDETERMINED )
return edge_stable[pattern];
temp = pattern;
for ( i = 0; i < 8; i++, temp /= 3 )
row[i] = temp % 3;
/* All positions stable unless proved otherwise. */
stable = 255;
/* Play out the 8 different moves and AND together the stability masks. */
for ( j = 0; j < 8; j++ )
stored_row[j] = row[j];
for ( i = 0; i < 8; i++ ) {
/* Make sure we work with the original configuration */
for ( j = 0; j < 8; j++ )
row[j] = stored_row[j];
if ( row[i] == EMPTY ) { /* Empty ==> playable! */
/* Mark the empty square as unstable and store position */
stable &= ~(1 << i);
/* Play out a black move */
row[i] = BLACKSQ;
if ( i >= 2 ) {
j = i - 1;
while ( (j >= 1) && (row[j] == WHITESQ) )
j--;
if ( row[j] == BLACKSQ )
for ( j++; j < i; j++ ) {
row[j] = BLACKSQ;
stable &= ~(1 << j);
}
}
if ( i <= 5 ) {
j = i + 1;
while ( (j <= 6) && (row[j] == WHITESQ) )
j++;
if ( row[j] == BLACKSQ )
for ( j--; j > i; j-- ) {
row[j] = BLACKSQ;
stable &= ~(1 << j);
}
}
new_pattern = 0;
for ( j = 0; j < 8; j++ )
new_pattern += pow3[j] * row[j];
stable &= recursive_find_stable( new_pattern );
/* Restore position */
for ( j = 0; j < 8; j++ )
row[j] = stored_row[j];
/* Play out a white move */
row[i] = WHITESQ;
if ( i >= 2 ) {
j = i - 1;
while ( (j >= 1) && (row[j] == BLACKSQ) )
j--;
if ( row[j] == WHITESQ )
for ( j++; j < i; j++ ) {
row[j] = WHITESQ;
stable &= ~(1 << j);
}
}
if ( i <= 5 ) {
j = i + 1;
while ( (j <= 6) && (row[j] == BLACKSQ) )
j++;
if ( row[j] == WHITESQ )
for ( j--; j > i; j-- ) {
row[j] = WHITESQ;
stable &= ~(1 << j);
}
}
new_pattern = 0;
for ( j = 0; j < 8; j++ )
new_pattern += pow3[j] * row[j];
stable &= recursive_find_stable( new_pattern );
}
}
/* Store and return */
edge_stable[pattern] = stable;
return stable;
}
/*
COUNT_COLOR_STABLE
Determines the number of stable discs for each of the edge configurations
for the two colors. This is done using the following convention:
- a stable corner disc gives stability of 1
- a stable non-corner disc gives stability of 2
This way the stability values for the four edges can be added together
without any risk for double-counting.
*/
static void
count_color_stable( void ) {
int i, j;
int pattern;
int row[8];
static const int stable_incr[8] = { 1, 2, 2, 2, 2, 2, 2, 1};
for ( i = 0; i < 8; i++ )
row[i] = 0;
for ( pattern = 0; pattern < 6561; pattern++ ) {
black_stable[pattern] = 0;
white_stable[pattern] = 0;
for ( j = 0; j < 8; j++ )
if ( edge_stable[pattern] & (1 << j) ) {
if ( row[j] == BLACKSQ ) {
black_stable[pattern] += stable_incr[j];
}
else if ( row[j] == WHITESQ ) {
white_stable[pattern] += stable_incr[j];
}
}
/* Next configuration */
i = 0;
do { /* The odometer principle */
row[i]++;
if (row[i] == 3)
row[i] = 0;
i++;
} while ( (row[i - 1] == 0) && (i < 8) );
}
}
/*
INIT_STABLE
Build the table containing the stability masks for all edge
configurations. This is done using dynamic programming.
*/
void
init_stable( void ) {
int i, j;
for ( i = 0; i < 256; i++ ) {
base_conversion[i] = 0;
for ( j = 0; j < 8; j++ )
if ( i & (1 << j) )
base_conversion[i] += pow3[j];
}
for ( i = 0; i < 6561; i++ )
edge_stable[i] = UNDETERMINED;
for ( i = 0; i < 6561; i++ )
if ( edge_stable[i] == UNDETERMINED )
(void) recursive_find_stable( i );
count_color_stable();
#if DEBUG
for ( i = 0; i < 6561; i++ )
display_row( i );
exit( 1 );
#endif
}