-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgmx-amber-compare.py
executable file
·318 lines (284 loc) · 13.5 KB
/
gmx-amber-compare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
#!/usr/bin/env python
import os, sys, re
import numpy as np
import copy
from molecule import Molecule
from nifty import _exec, printcool_dictionary
import parmed
from collections import OrderedDict
from atest import Calculate_GMX, Calculate_AMBER, interpret_mdp
import simtk.openmm.app as app
import simtk.openmm as mm
import simtk.unit as u
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--ff', type=str, default='fb15', choices=['fb15', 'fb15ni', 'ildn'], help='Select a force field to compare between Gromacs and AMBER.')
args, sys.argv = parser.parse_known_args(sys.argv)
# Disable Gromacs backup files
os.environ["GMX_MAXBACKUP"] = "-1"
# Sections in the .rtp file not corresponding to a residue
rtpknown = ['atoms', 'bonds', 'bondedtypes', 'dihedrals', 'impropers']
# Mapping of amino acid atom names to new atom classes. Mostly new
# atom classes for beta carbons but a few new gamma carbons are
# defined. They are named using the number "6" (for carbon) and the
# one-letter amino acid code. A few exceptions in the case of alternate
# protonation states.
NewAC = {"SER":{"CB":"6S"}, "THR":{"CB":"6T", "CG2":"6t"}, "LEU":{"CB":"6L"},
"VAL":{"CB":"6V"}, "ILE":{"CB":"6I", "CG2":"6i"}, "ASN":{"CB":"6N"},
"GLN":{"CB":"6Q", "CG":"6q"}, "ARG":{"CB":"6R"}, "HID":{"CB":"6H"},
"HIE":{"CB":"6h"}, "HIP":{"CB":"6+"}, "TRP":{"CB":"6W"},
"TYR":{"CB":"6Y"}, "PHE":{"CB":"6F"}, "GLU":{"CB":"6E", "CG":"6e"},
"ASP":{"CB":"6D"}, "LYS":{"CB":"6K"}, "LYN":{"CB":"6k"},
"PRO":{"CB":"6P"}, "CYS":{"CB":"6C"}, "CYM":{"CB":"6c"},
"MET":{"CB":"6M"}, "ASH":{"CB":"6d"}, "GLH":{"CB":"6J", "CG":"6j"}}
for k, v in NewAC.items():
NewAC["C"+k] = v
NewAC["N"+k] = v
def RTPAtomNames(rtpfnm):
answer = OrderedDict()
for line in open(rtpfnm).readlines():
s = line.split()
# Do nothing for an empty line or a comment line.
if len(s) == 0 or re.match('^ *;',line):
section = 'None'
continue
line = line.split(';')[0]
s = line.split()
if re.match('^ *\[.*\]',line):
# Makes a word like "atoms", "bonds" etc.
section = re.sub('[\[\] \n]','',line.strip())
if section not in rtpknown:
resname = section
elif section == 'atoms':
answer.setdefault(resname, []).append((s[0], s[1], float(s[2])))
return answer
# Gromacs .rtp file with residue definitions
gmxrtp = "/home/leeping/opt/gromacs/share/gromacs/top/amberfb15.ff/aminoacids.rtp"
# Gromacs atom names in residues
gmx_resatoms = RTPAtomNames(gmxrtp)
# Load AMBER OFF libraries for amino acids
amb_off = ['all_aminofb15.lib', 'all_aminoctfb15.lib', 'all_aminontfb15.lib']
amb_resatoms = OrderedDict()
for fin in amb_off:
AOff = parmed.modeller.offlib.AmberOFFLibrary.parse(os.path.join(os.environ['AMBERHOME'], 'dat', 'leap', 'lib', fin))
for k, v in AOff.items():
for a in v.atoms:
amb_resatoms.setdefault(k, []).append((a.name, a.type, a.charge))
gmx_resnames = set(gmx_resatoms.keys())
amb_resnames = set(amb_resatoms.keys())
print "GMX resnames not in AMBER:", ' '.join(sorted(list(gmx_resnames.difference(amb_resnames))))
print "AMBER resnames not in GMX:", ' '.join(sorted(list(amb_resnames.difference(gmx_resnames))))
gmx_amb_amap = OrderedDict()
amb_gmx_amap = OrderedDict()
for resname in sorted(list(gmx_resnames.intersection(amb_resnames))):
for gmx_atom, amb_atom in zip(gmx_resatoms[resname], amb_resatoms[resname]):
gmx_aname, gmx_atype, gmx_acharge = gmx_atom
# Gromacs doesn't use new AMBER-FB15 atom types, so figure it out from the NewAC dictionary
gmx_atype = NewAC.get(resname, {}).get(gmx_aname, gmx_atype)
amb_aname, amb_atype, amb_acharge = amb_atom
# The following code for mapping GMX -> AMBER atom names
# assumes that the atoms in the GMX .rtp and AMBER .off
# dictionaries come in the same order. This is a sanity check
# that checks to see if the atom type and atomic charge are
# indeed the same.
if gmx_atype != amb_atype:
print "Atom types don't match for", resname, gmx_atom, amb_atom
raise RuntimeError
if gmx_acharge != amb_acharge:
print "Atomic charges don't match for", resname, gmx_atom, amb_atom
raise RuntimeError
# Print the atoms that are renamed
# if gmx_aname != amb_aname:
# print "%s (AMBER) %s <-> %s (GMX)" % (resname, amb_aname, gmx_aname)
gmx_amb_amap.setdefault(resname, OrderedDict())[gmx_aname] = amb_aname
amb_gmx_amap.setdefault(resname, OrderedDict())[amb_aname] = gmx_aname
amber_atomnames = OrderedDict([(k, set(v.keys())) for k, v in amb_gmx_amap.items()])
max_reslen = max([len(v) for v in amber_atomnames.values()])
# Begin with an AMBER-compatible PDB file
# Please ensure by hand :)
pdb = Molecule(sys.argv[1], build_topology=False)
gmx_pdb = copy.deepcopy(pdb)
del gmx_pdb.Data['elem']
# Convert to a GROMACS-compatible PDB file
# This mainly involves renaming atoms and residues,
# notably hydrogen names.
# List of atoms in the current residue
anameInResidue = []
anumInResidue = []
for i in range(gmx_pdb.na):
# Rename the ions residue names to be compatible with Gromacs
if gmx_pdb.resname[i] == 'Na+':
gmx_pdb.resname[i] = 'NA'
elif gmx_pdb.resname[i] == 'Cl-':
gmx_pdb.resname[i] = 'CL'
elif gmx_pdb.resname[i] in ['HOH','WAT']:
gmx_pdb.resname[i] = 'SOL'
if gmx_pdb.atomname[i] == 'O':
gmx_pdb.atomname[i] = 'OW'
elif gmx_pdb.atomname[i] == 'H1':
gmx_pdb.atomname[i] = 'HW1'
elif gmx_pdb.atomname[i] == 'H2':
gmx_pdb.atomname[i] = 'HW2'
else:
print "Atom number %i unexpected atom name in water molecule: %s" % gmx_pdb.atomname[i]
raise RuntimeError
# Rename the ion atom names
if gmx_pdb.atomname[i] == 'Na+':
gmx_pdb.atomname[i] = 'Na'
elif gmx_pdb.atomname[i] == 'Cl-':
gmx_pdb.atomname[i] = 'Cl'
# A peculiar thing sometimes happens with a hydrogen being named "3HG1" where in fact it shold be "HG13"
if gmx_pdb.atomname[i][0] in ['1','2','3'] and gmx_pdb.atomname[i][1] == 'H':
gmx_pdb.atomname[i] = gmx_pdb.atomname[i][1:] + gmx_pdb.atomname[i][0]
anumInResidue.append(i)
anameInResidue.append(gmx_pdb.atomname[i])
if (i == (gmx_pdb.na - 1)) or ((gmx_pdb.chain[i+1], gmx_pdb.resid[i+1]) != (gmx_pdb.chain[i], gmx_pdb.resid[i])):
# Try to look up the residue in the amber_atomnames template
mapped = False
for k, v in amber_atomnames.items():
if set(anameInResidue) == v:
mapped = True
break
if mapped:
for anum, aname in zip(anumInResidue, anameInResidue):
gmx_pdb.atomname[anum] = amb_gmx_amap[k][aname]
anameInResidue = []
anumInResidue = []
# Write the Gromacs-compatible PDB file
gmx_pdbfnm = os.path.splitext(sys.argv[1])[0]+"-gmx.pdb"
gmx_pdb.write(gmx_pdbfnm)
gmx_ffnames = {'fb15':'amberfb15', 'fb15ni':'amberfb15ni', 'ildn':'amber99sb-ildn'}
amber_ffnames = {'fb15' : 'fb15', 'fb15ni':'fb15ni', 'ildn':'ff99SBildn'}
# Set up the system in Gromacs
_exec("pdb2gmx -ff %s -f %s" % (gmx_ffnames[args.ff], gmx_pdbfnm), stdin="1\n")
# Set up the system in AMBER
amb_outpdbfnm = os.path.splitext(sys.argv[1])[0]+"-amb.pdb"
with open("stage.leap", 'w') as f:
print >> f, """source leaprc.{choice}
pdb = loadpdb {pdbin}
savepdb pdb {pdbout}
saveamberparm pdb prmtop inpcrd
quit
""".format(choice = amber_ffnames[args.ff],
pdbin = sys.argv[1], pdbout = amb_outpdbfnm)
_exec("tleap -f stage.leap")
# Load the GROMACS output coordinate file
gmx_gro = Molecule("conf.gro", build_topology=False)
# Build a mapping of (atom numbers in original PDB -> atom numbers in Gromacs .gro)
anumInResidue = []
anameInResidue_pdb = []
anameInResidue_gro = []
# For an atom number in the original .pdb file, this is the corresponding atom number in the .gro file
anumMap_gro = []
for i in range(gmx_pdb.na):
anumInResidue.append(i)
anameInResidue_pdb.append(gmx_pdb.atomname[i])
anameInResidue_gro.append(gmx_gro.atomname[i])
if (i == (gmx_pdb.na - 1)) or ((gmx_pdb.chain[i+1], gmx_pdb.resid[i+1]) != (gmx_pdb.chain[i], gmx_pdb.resid[i])):
if set(anameInResidue_pdb) != set(anameInResidue_gro):
print set(anameInResidue_pdb).symmetric_difference(set(anameInResidue_gro))
print "GROMACS PDB: Atom names do not match for residue %i (%s)" % (gmx_pdb.resid[i], gmx_pdb.resname[i])
raise RuntimeError
for anum, aname in zip(anumInResidue, anameInResidue_pdb):
anumMap_gro.append(anumInResidue[anameInResidue_gro.index(aname)])
anumInResidue = []
anameInResidue_pdb = []
anameInResidue_gro = []
amb_pdb = Molecule(amb_outpdbfnm, build_topology=False)
anumInResidue = []
anameInResidue_pdb = []
anameInResidue_amb = []
# For an atom number in the original .pdb file, this is the corresponding atom number in the .gro file
anumMap_amb = []
for i in range(pdb.na):
# A peculiar thing sometimes happens with a hydrogen being named "3HG1" where in fact it shold be "HG13"
if pdb.atomname[i][0] in ['1','2','3'] and pdb.atomname[i][1] == 'H':
pdb.atomname[i] = pdb.atomname[i][1:] + pdb.atomname[i][0]
anumInResidue.append(i)
anameInResidue_pdb.append(pdb.atomname[i])
anameInResidue_amb.append(amb_pdb.atomname[i])
if (i == (pdb.na - 1)) or ((pdb.chain[i+1], pdb.resid[i+1]) != (pdb.chain[i], pdb.resid[i])):
if set(anameInResidue_pdb) != set(anameInResidue_amb):
print set(anameInResidue_pdb).symmetric_difference(set(anameInResidue_amb))
print "AMBER PDB: Atom names do not match for residue %i (%s)" % (pdb.resid[i], pdb.resname[i])
raise RuntimeError
for anum, aname in zip(anumInResidue, anameInResidue_pdb):
anumMap_amb.append(anumInResidue[anameInResidue_amb.index(aname)])
anumInResidue = []
anameInResidue_pdb = []
anameInResidue_amb = []
anumMap_amb_gro = [None for i in range(pdb.na)]
for i, (anum_amber, anum_gro) in enumerate(zip(anumMap_amb, anumMap_gro)):
# if i != anum_amber:
# print i, anum_amber, anum_gro
if anum_amber != anum_gro:
print "Gromacs and AMBER atoms don't have the same order:", "\x1b[91m", i, anum_amber, anum_gro, "\x1b[0m"
# raise RuntimeError
# anumMap_amb_gro[anum_amber] = anum_gro
# Run a quick MD simulation in Gromacs
_exec("grompp_d -f eq.mdp -o eq.tpr")
# You can set print_to_screen=True to see how fast it's going
_exec("mdrun_d -nt 1 -v -stepout 10 -deffnm eq", print_to_screen=False)
# LPW WARNING: This is Changed
_exec("trjconv_d -s eq.tpr -f eq.trr -o eq.gro -ndec 9 -pbc mol -dump 0", stdin="0\n")
# Confirm that constraints are satisfied
OMM_eqgro = app.GromacsGroFile('eq.gro')
OMM_prmtop = app.AmberPrmtopFile('prmtop')
system = OMM_prmtop.createSystem(nonbondedMethod=app.NoCutoff)
integ = mm.VerletIntegrator(1.0*u.femtosecond)
plat = mm.Platform.getPlatformByName('Reference')
simul = app.Simulation(OMM_prmtop.topology, system, integ)
simul.context.setPositions(OMM_eqgro.positions)
simul.context.applyConstraints(1e-12)
state = simul.context.getState(getPositions=True)
pos = np.array(state.getPositions().value_in_unit(u.angstrom)).reshape(-1,3)
M = Molecule('eq.gro')
M.xyzs[0] = pos
M.write('constrained.gro')
# Gromacs calculation
GMX_Energy, GMX_Force, Ecomps_GMX = Calculate_GMX('constrained.gro', 'topol.top', 'shot.mdp')
GMX_Force = GMX_Force.reshape(-1,3)
# Print Gromacs energy components
printcool_dictionary(Ecomps_GMX, title="GROMACS energy components")
# Parse the .mdp file to inform ParmEd
defines, sysargs, mdp_opts = interpret_mdp('shot.mdp')
parm = parmed.amber.AmberParm('prmtop', 'inpcrd')
GmxGro = parmed.gromacs.GromacsGroFile.parse('constrained.gro')
parm.box = GmxGro.box
parm.positions = GmxGro.positions
inpcrd_out = parmed.amber.AmberAsciiRestart("inpcrd_out", mode="w")
inpcrd_out.coordinates = np.array(GmxGro.positions.value_in_unit(u.angstrom)).reshape(-1,3)
inpcrd_out.box = GmxGro.box
inpcrd_out.close()
# AMBER calculation (optional)
AMBER_Energy, AMBER_Force, Ecomps_AMBER = Calculate_AMBER(parm, mdp_opts)
AMBER_Force = AMBER_Force.reshape(-1,3)
# Print AMBER energy components
printcool_dictionary(Ecomps_AMBER, title="AMBER energy components")
def compare_ecomps(in1, in2):
groups = [([['Bond'], ['BOND']]),
([['Angle'], ['ANGLE']]),
([['Proper-Dih.', 'Improper-Dih.'], ['DIHED']]),
([['LJ-14'], ['1-4 NB']]),
([['Coulomb-14'], ['1-4 EEL']]),
([['LJ-(SR)', 'Disper.-corr.'], ['VDWAALS']]),
([['Coulomb-(SR)', 'Coul.-recip.'], ['EELEC']]),
([['Potential'], ['EPTOT']])]
t1 = []
t2 = []
v1 = []
v2 = []
for g1, g2 in groups:
t1.append('+'.join(g1))
v1.append(sum([v for k, v in in1.items() if k in g1]))
t2.append('+'.join(g2))
v2.append(sum([v for k, v in in2.items() if k in g2]))
for i in range(len(t1)):
print "%%%is" % (max([len(t) for t in t1]) + 3) % t1[i], "% 18.6f" % v1[i], " --vs--",
print "%%%is" % (max([len(t) for t in t2]) + 3) % t2[i], "% 18.6f" % v2[i],
print "Diff: % 12.6f" % (v2[i]-v1[i])
compare_ecomps(Ecomps_GMX, Ecomps_AMBER)
D_Force = GMX_Force - AMBER_Force
D_FrcRMS = np.sqrt(np.mean([sum(k**2) for k in D_Force]))
D_FrcMax = np.sqrt(np.max(np.array([sum(k**2) for k in D_Force])))
print "RMS / Max Force Difference (kJ/mol/nm): % .6e % .6e" % (D_FrcRMS, D_FrcMax)