-
Notifications
You must be signed in to change notification settings - Fork 225
/
Copy pathface_landmark.py
116 lines (94 loc) · 3.78 KB
/
face_landmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import sys
import os
import time
import pprint
import caffe
import dlib
import cv2
import numpy as np
def file_list_fn(path):
file_list = []
files = os.listdir(path)
for f in files:
file_list.append(f)
return file_list
net_work_path = '/home/code/face-landmark/model/landmark_deploy.prototxt'
weight_path = '/home/code/face-landmark/model/VanFace.caffemodel'
images_dir = '/home/code/face-landmark/images/'
result_dir = '/home/code/face-landmark/results/'
image_list = file_list_fn(images_dir)
caffe.set_mode_cpu()
net = caffe.Net(net_work_path, weight_path, caffe.TEST)
net.name = 'FaceThink_face_landmark_test'
detector = dlib.get_frontal_face_detector()
total_detecting_time = 0.0
total_landmark_time = 0.0
face_total = 0.0
for image in image_list:
print("Processing file: {}".format(image))
img = cv2.imread(images_dir + image)
# The 1 in the second argument indicates that we should upsample the image
# 1 time. This will make everything bigger and allow us to detect more
# faces.
det_start_time = time.time()
dets = detector(img, 1)
det_end_time = time.time()
det_time = det_end_time - det_start_time
total_detecting_time += det_time
print "Detecting time is {}".format(det_time)
print "Number of faces detected: {}".format(len(dets))
for i, d in enumerate(dets):
print "Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format(
i, d.left(), d.top(), d.right(), d.bottom())
for index, det in enumerate(dets):
face_total += 1
x1 = det.left()
y1 = det.top()
x2 = det.right()
y2 = det.bottom()
if x1 < 0: x1 = 0
if y1 < 0: y1 = 0
if x2 > img.shape[1]: x2 = img.shape[1]
if y2 > img.shape[0]: y2 = img.shape[0]
cv2.rectangle(img, (x1, y1), (x2, y2), (0, 0, 255), 2)
roi = img[y1:y2 + 1, x1:x2 + 1, ]
gary_img = cv2.cvtColor(roi, cv2.COLOR_RGB2GRAY)
w = 60
h = 60
print image
res = cv2.resize(gary_img, (w, h), 0.0, 0.0, interpolation=cv2.INTER_CUBIC)
resize_mat = np.float32(res)
m = np.zeros((w, h))
sd = np.zeros((w, h))
mean, std_dev = cv2.meanStdDev(resize_mat, m, sd)
new_m = mean[0][0]
new_sd = std_dev[0][0]
new_img = (resize_mat - new_m) / (0.000001 + new_sd)
if new_img.shape[0] != net.blobs['data'].data[0].shape or new_img.shape[1] != net.blobs['data'].data[1].shape:
print "Incorrect " + image + ", resize to correct dimensions."
net.blobs['data'].data[...] = new_img
landmark_time_start = time.time()
out = net.forward()
landmark_time_end = time.time()
landmark_time = landmark_time_end - landmark_time_start
total_landmark_time += landmark_time
print "landmark time is {}".format(landmark_time)
points = net.blobs['Dense3'].data[0].flatten()
point_pair_l = len(points)
for i in range(point_pair_l / 2):
x = points[2*i] * (x2 - x1) + x1
y = points[2*i+1] * (y2 - y1) + y1
cv2.circle(img, (int(x), int(y)), 1, (0, 0, 255), 2)
cv2.imwrite(result_dir + image, img)
print total_detecting_time
print total_landmark_time
print face_total
per_face_det_time = total_detecting_time / face_total
per_face_landmark_time = total_landmark_time / face_total
per_image_det_time = total_detecting_time / len(image_list)
per_image_landmark_time = total_landmark_time / len(image_list)
print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'
print "per face detecting time is {}".format(per_face_det_time)
print "per face landmark time is {}".format(per_face_landmark_time)
print "per image detecting time is {}".format(per_image_det_time)
print "per image detecting time is {}".format(per_image_landmark_time)