Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Transform the data frame by merging the date and time field into a single column #1

Open
ozkary opened this issue Jun 9, 2023 · 9 comments
Assignees
Labels
user-story user story template

Comments

@ozkary
Copy link
Owner

ozkary commented Jun 9, 2023

As a data scientist, I want to generate code using the following technologies, requirements, and specifications:

Technologies:

  • Python

Requirements:

  • Transform a data frame by consolidating the 'date' and 'time' columns into a date time field column named 'created'.

Specifications:

  • Create a function with the name 'transform_data'
  • Use pandas to perform the data transformation
  • Load the data from a parameter with the CSV file path
  • Save the resulting data frame to disk in Parquet format
  • Return true if successful or false if is not
  • For coding standards, use the guidelines outlined in the PEP 8 style guide for Python.
  • Create a unit test for the transform_data function to verify its correctness. The unit test should cover different scenarios and assert the expected behavior of the function.
@ozkary ozkary added the user-story user story template label Jun 9, 2023
@ozkary ozkary self-assigned this Jun 9, 2023
@ozkary
Copy link
Owner Author

ozkary commented Jun 13, 2023

test api via postman

@ozkary
Copy link
Owner Author

ozkary commented Jun 14, 2023

Generated code:

import pandas as pd

def transform_data(csv_path):
    '''
    Transform a data frame by consolidating the 'date' and 'time' columns into a date time field column named 'created'.

    Parameters
    ----------
    csv_path : str
        The path of the CSV file to be transformed

    Returns
```

@ozkary
Copy link
Owner Author

ozkary commented Jun 14, 2023

Code:

import pandas as pd
import unittest

def transform_data(csv_file_path):
"""
Transform a data frame by consolidating the 'date' and 'time' columns into a date time field column named 'created'.

Parameters:
csv_file_path (str): The path of the CSV file.

Returns:
bool: True if successful, False if not.
"""
try:
    # Load the data from the CSV file
    data_frame = pd.read_csv(csv_file_path)

    # Combine the 'date' and 'time' columns into a single 'created' column
    data_frame['created'] = pd.to_datetime(data_frame['date'] + ' ' + data_frame['time'])

    # Save the resulting data frame to disk in Parquet format
    data_frame.to_parquet('data_frame.parquet')

@ozkary
Copy link
Owner Author

ozkary commented Jun 15, 2023

Generated code:


import pandas as pd
import unittest

def transform_data(csv_file_path):
    """
    Transform a data frame by consolidating the 'date' and 'time' columns into a date time field column named 'created'.

    Parameters:
    csv_file_path (str): The path of the CSV file to be transformed.

    Returns:
    bool: True if the transformation was successful, False otherwise.
    """
    # Load the data from the CSV file
    df = pd.read_csv(csv_file_path)

    # Convert the 'date' and 'time' columns into a single 'created' column
    df['created'] = pd.to_datetime(df['date'] + ' ' + df['time'])

    # Save the transformed data frame to disk in Parquet format
    df.to_parquet('transformed_data.parquet')

    return True


class TransformDataTest(unittest.TestCase):
    """Unit tests for the `transform_data` function."""

    def test_with_valid_data(self):
        """Test the function with valid data."""
        # Create a mock CSV file
        with open('mock_data.csv', 'w') as f:
            f.write('date,time\n')

@ozkary
Copy link
Owner Author

ozkary commented Jun 22, 2023

Generated code:


import pandas as pd
import unittest

def transform_data(csv_file_path):
    """
    Transforms a data frame by consolidating the 'date' and 'time' columns into a date time field column named 'created'.

    Parameters:
        csv_file_path (str): The path to the CSV file to transform.

    Returns:
        bool: True if successful, False if not.
    """
    try:
        # Load the CSV file into a pandas data frame
        df = pd.read_csv(csv_file_path)

        # Create a new column 'created' by combining the 'date' and 'time' columns
        df['created'] = pd.to_datetime(df['date'] + ' ' + df['time'])

        # Drop the 'date' and 'time' columns
        df.drop(['date', 'time'], axis=1, inplace=True)

        # Save the resulting data frame to disk in Parquet format
        df.to_parquet('transformed_data.parquet')

        return True
    except:
        return False

class TestTransformData(unittest.TestCase):
    """Unit tests for the `transform_data` function."""

    def test_transform_data_success(self):

@ozkary
Copy link
Owner Author

ozkary commented Jun 22, 2023

Generated code:


# Import Libraries
import pandas as pd
import pytest

# Transform Data Function
def transform_data(csv_file_path):
    '''
    Transforms a data frame by consolidating the 'date' and 'time' columns into a date time field column named 'created'.

    Parameters:
        csv_file_path (str): The path to the CSV file containing the data to transform.

    Returns:
        success (bool): True if successful, false if not.
    '''
    try:
        # Load data from CSV file
        df = pd.read_csv(csv_file_path)

        # Consolidate date and time columns into a date time field
        df['created'] = pd.to_datetime(df['date'] + ' ' + df['time'])

        # Save data frame to disk in Parquet format
        df.to_parquet('transformed_data.parquet')

        # Return success
        return True

    except:
        # Return failure
        return False

# Unit Tests
@pytest.mark.parametrize('csv_file_path, expected_result', [
    ('test_data.csv', True),
    ('invalid_path.csv', False)
])
def test_transform_data(csv_

@ozkary
Copy link
Owner Author

ozkary commented Jun 22, 2023

Generated code:


## transform_data Function
This function takes a file path to a CSV file and transforms it by consolidating the 'date' and 'time' columns into a `created` column of type `datetime`.

```python
import pandas as pd

def transform_data(csv_file_path):
    # Read CSV file
    df = pd.read_csv

@ozkary
Copy link
Owner Author

ozkary commented Apr 9, 2024

$Provider.GEMINI Generated code:

import pandas as pd

def transform_data(csv_path, output_path):
    """
    Transforms a data frame by consolidating the 'date' and 'time' columns into a date time field column named 'created'.

    Args:
        csv_path (str): The path to the CSV file containing the data.
        output_path (str): The path to the Parquet file where the transformed data should be saved.

    Returns:
        bool: True if the transformation was successful, False otherwise.
    """
    try:
        # Load the data from the CSV file
        df = pd.read_csv(csv_path)

        # Consolidate the 'date' and 'time' columns into a date time field column named 'created'
        df['created'] = pd.to_datetime(df['date'] + ' ' + df['time'])

        # Drop the 'date' and 'time' columns
        df.drop(columns=['date', 'time'], inplace=True)

        # Save the resulting data frame to disk in Parquet format
        df.to_parquet(output_path)

        return True
    except Exception as e:
        print(f'Error transforming data: {e}')
        return False

def test_transform_data():
    """
    Unit test for the `transform_data` function.
    """
    # Create a test data frame
    df = pd.DataFrame({
        'date': ['2023-03-08', '2023-03-09', '2023-03-10'],
        'time': ['10:00:00', '11:00:00', '12:00:00'],
        'value': [1, 2, 3]
    })

    # Transform the test data frame
    transformed_df = transform_data(df)

    # Check that the transformed data frame has the expected shape and columns
    assert transformed_df.shape == (3, 2)
    assert 'created' in transformed_df.columns

    # Check that the 'created' column has the expected values
    assert transformed_df['created'][0] == pd.to_datetime('2023-03-08 10:00:00')
    assert transformed_df['created'][1] == pd.to_datetime('2023-03-09 11:00:00')
    assert transformed_df['created'][2] == pd.to_datetime('2023-03-10 12:00:00')

if __name__ == '__main__':
    # Test the `transform_data` function
    test_transform_data()
```
```

@ozkary ozkary removed the user-story user story template label Apr 10, 2024
@ozkary ozkary added the user-story user story template label Jun 29, 2024
@ozkary
Copy link
Owner Author

ozkary commented Jun 29, 2024

Provider.GEMINI Generated code:

import pandas as pd

def transform_data(csv_file_path, output_file_path):
  """
  Transforms a data frame by consolidating the 'date' and 'time' columns into a date time field column named 'created'.

  Args:
    csv_file_path: The CSV file path of the data frame to transform.
    output_file_path: The Parquet file path to save the resulting data frame.

  Returns:
    True if successful, False otherwise.
  """
  try:
    # Load the data frame from the CSV file
    df = pd.read_csv(csv_file_path)

    # Consolidate the 'date' and 'time' columns into a date time field column
    df['created'] = pd.to_datetime(df['date'] + ' ' + df['time'])

    # Drop the original 'date' and 'time' columns
    df.drop(columns=['date', 'time'], inplace=True)

    # Save the resulting data frame to disk in Parquet format
    df.to_parquet(output_file_path)

    return True
  except Exception as e:
    print('Error transforming data frame:', e)
    return False

def test_transform_data():
    # Create a test data frame
    test_df = pd.DataFrame({
        'date': ['2023-03-08', '2023-03-09', '2023-03-10'],
        'time': ['10:00:00', '11:00:00', '12:00:00'],
        'value': [1, 2, 3]
    })

    # Transform the test data frame
    transformed_df = transform_data(test_df, 'test_output.parquet')

    # Assert that the transformed data frame has the correct shape and columns
    assert transformed_df.shape == (3, 2)
    assert list(transformed_df.columns) == ['created', 'value']

    # Assert that the 'created' column is of type datetime
    assert transformed_df['created'].dtype == 'datetime64[ns]'

    # Assert that the 'created' column contains the correct values
    assert transformed_df['created'].tolist() == ['2023-03-08 10:00:00', '2023-03-09 11:00:00', '2023-03-10 12:00:00']

if __name__ == '__main__':
    test_transform_data()
```
```

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
user-story user story template
Projects
None yet
Development

No branches or pull requests

1 participant