-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathdata_module.py
55 lines (45 loc) · 1.78 KB
/
data_module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
"""Data modules for PyTorch Lightning."""
from argparse import Namespace
from typing import Optional
import torch
import pytorch_lightning as pl
from sklearn.model_selection import train_test_split
from calm.alphabet import Alphabet
from calm.dataset import SequenceDataset
from calm.pipeline import (
Pipeline,
DataCollator,
DataTrimmer,
DataPadder,
DataPreprocessor,
CodonRandomizer,
DataPreprocessorForDualData,
)
class CodonDataModule(pl.LightningDataModule):
"""PyTorch Lightning DataModule for manipulating FASTA files
containing sequences of codons."""
def __init__(self, args: Namespace, alphabet: Alphabet, data_dir: str,
batch_size: int, random_seed: int = 42, test_size : float = 0.01):
super().__init__()
self.data_dir = data_dir
self.test_size = test_size
self.batch_size = batch_size
self.random_seed = random_seed
self.pipeline = Pipeline([
DataCollator(args, alphabet),
DataTrimmer(args, alphabet),
DataPadder(args, alphabet),
DataPreprocessor(args, alphabet)
])
self.train_data = None
self.val_data = None
def setup(self, stage: Optional[str] = None):
dataset = SequenceDataset(self.data_dir, codon_sequence=True)
self.train_data, self.val_data = train_test_split(dataset,
test_size=self.test_size, shuffle=True, random_state=self.random_seed)
def train_dataloader(self):
return torch.utils.data.DataLoader(self.train_data, num_workers=3,
batch_size=self.batch_size, collate_fn=self.pipeline)
def val_dataloader(self):
return torch.utils.data.DataLoader(self.val_data, num_workers=1,
batch_size=self.batch_size, collate_fn=self.pipeline)